New technology to detect bitter almonds in real time

January 29, 2021

Who hasn't at some point been chewing on an almond and tasted an unpleasant and unexpected aftertaste that has nothing to do with the taste we are used to from one of the most consumed nuts in the world? The culprit has a name: amygdalin, a diglucoside that, when in contact with enzymes present in saliva, breaks down into glucose, benzaldehyde (the cause of the bitter taste) and hydrogen cyanide.

To reduce this unpleasant 'surprise', the Farming Systems Engineering (AGR-128) and Food Technology (AGR-193) research groups at the University of Cordoba's School of Agricultural and Forestry Engineering, with collaboration from the Andalusian Institute of Agricultural Research and Training's Alameda del Obispo Center, developed method that can predict levels of the abovementioned amygdalin present in the nuts analyzed both with and without shells, as well as correctly classify sweet almonds and bitter ones on an industrial scale, something that has only been done with shelled nuts, individual kernels or ground nuts to date.

The new system uses portable equipment based on NIRS technology -Near Infrared Spectroscopy- which can analyze large amounts of a product in situ in real time, without having to go into a lab. This technological application is "of great interest to the farming sector", explains Professor Dolores Pérez Marín, since almond bitterness in the wild can be helpful to prevent predators from ingesting the seeds of certain varieties, but on an industrial scale it offers no advantages and many disadvantages: an unpleasant taste, product devaluation and potential problems with food safety if consumption of bitter nuts occurs on a large scale.

Technically, the NIRS sensors use a beam of light that, when interacting with organic matter, returns a unique signal (spectrum) for each product sample, as in an unmistakable digital print that provides information and allows us to define the sample. In this case, as explained by doctoral student and first author of the research paper, Miguel Vega Castellote, the portable sensors, "whose signal along with the reference values allow for the development of prediction models", are able to analyze different parameters by "scanning" the product quickly and noninvasively, as in without modifying it.

Food fraud

Using NIRS technology, in which the research team has vast experience with an array of food products, is especially useful in the early detection of possible fraud and in food authentication. Therefore, the team has initiated another research project aimed at detecting batches of sweet almonds adulterated with bitter ones and in which almost 90% of the fraudulent items were identified. The system tested in this research, explains Professor María Teresa Sánchez Pineda de las Infantas, another author of the paper "could be implemented at any point in the value chain, including upon reception, during processing and shipping, and could be used as a fast and affordable anti-fraud early warning method".
-end-


University of Córdoba

Related Food Safety Articles from Brightsurf:

USDA says current poultry food safety guidelines do not stop salmonella outbreaks
Current poultry food safety guidelines for Salmonella, the leading cause of foodborne illness outbreaks, are inadequate.

Food safety model may help pandemic management
No precedent exists for managing the COVID-19 pandemic - although a plan for working through major public food scares may point to the best ways of alerting and communicating with the public.

Food safety investments open new markets, boost revenue for small farmers
A new Cornell University study finds that when small-scale farmers are trained in food safety protocols and develop a farm food safety plan, new markets open up to them, leading to an overall gain in revenue.

Researchers print, tune graphene sensors to monitor food freshness, safety
Researchers are using high-resolution printing technology and the unique properties of graphene to make low-cost biosensors to monitor food safety and livestock health.

COVID-19 from food safety and biosecurity perspective
Most recently emerged pneumonia of unknown cause named COVID-19 has a devastating impact on public health and economy surpassing its counterparts in morbidity and mortality.

Amperometric sensors assist in analyzing food safety
Antioxidants are one of the most interesting and widely investigated compounds in life sciences due to their key role in the protection of living systems from the negative effects of free radicals.

Advancing frozen food safety: UGA evaluates environmental monitoring programs
Arlington, Va. - New research funded by the Frozen Food Foundation evaluates current environmental monitoring practices being implemented across the frozen food industry to prevent and control Listeria monocytogenes (Lm).

Advancing frozen food safety: Cornell develops novel food safety assessment tool
New research funded by the Frozen Food Foundation developed a modeling tool to assist the frozen food industry with understanding and managing listeriosis risks.

Computer program aids food safety experts with pathogen testing
Cornell University scientists have developed a computer program, Environmental Monitoring With an Agent-Based Model of Listeria (EnABLe), to simulate the most likely locations in a processing facility where the deadly food-borne pathogen Listeria monocytogenes might be found.

New graphene-based sensor design could improve food safety
In the US, more than 100 food recalls were issued in 2017 because of contamination from harmful bacteria such as Listeria, Salmonella or E. coli.

Read More: Food Safety News and Food Safety Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.