Gene Therapy Enables Transplantation Without Immunosuppressive Drugs

January 29, 1998

Researchers at the University of Pennsylvania Medical Center, working in a rodent model, have succeeded in transplanting livers without the need for immunosuppressive drugs. In a scientific first, a gene therapy strategy was used to alter the donor liver prior to surgery so that the immune system of the recipient became permanently tolerant of the new organ. The new findings are reported in the February issue of Nature Medicine.

Although additional animal studies will be required before human clinical trials of the approach can be considered, the advantages of such a localized system for countering the immune-system rejection of newly engrafted organs are potentially significant. The powerful immunosuppressive drugs now required to allow a life-saving transplanted organ to survive in a recipient's body without rejection do their work only at a substantial cost to the overall well-being of the recipient.

"Currently, all immunosuppression is systemic and lifelong," says Kim M. Olthoff, MD, an assistant professor of surgery and lead author on the study. "So, to protect the new organ from rejection, long-term drugs that suppress the entire immune system must be given, making the person susceptible to infections, cancers, and a number of other complications, including nerve and kidney damage. In our study, a one-time gene therapy treatment of only the donor liver made the recipient's immune system tolerant of the new organ without the need for any further immunosuppression."

The technique developed by the Penn team makes use of an adenovirus -- a virus usually associated with the common cold -- that has been engineered to incorporate the gene that encodes for a protein called CTLA4Ig. The gene-bearing virus, referred to as a vector, is then introduced into an organ preservation solution used to maintain the liver after harvesting and prior to engraftment, resulting in uptake by the organ. The procedure is performed in low-temperature conditions that further enhance preservation of the organ.

After the transplant surgery, the gene is expressed in the liver in the form of the CTLA4Ig protein. This protein blocks the so-called costimulatory signal required to fully activate T cells, the cells responsible for recognizing and responding to foreign antigens such as those presented by the tissues of a transplanted organ.

The term costimulatory refers to the fact that two chemical signals are required to trigger T cells to attack foreign tissues. A primary signal that alerts the cell to the presence of a foreign antigen occurs at the site of a molecule called the major histocompatibility complex, or MHC. Without a second signal, however -- the costimulatory signal -- the T cell will not develop into a cytotoxic T cell that destroys the invader tissues.

In fact, earlier research has shown that if the pathway for the costimulatory signal is blocked at the time of foreign antigen presentation -- at the time of surgery and in the period immediately thereafter, in this case -- then the T cells become permanently tolerant of the new tissue. It is this learned tolerance that explains why the gene therapy tactic employed by the Penn researchers resulted in successful long-term liver engraftment without the need for continuing immunosuppressive drug therapy.

"What we have developed is a feasible model for a gene therapy approach to local immunosuppression in liver transplantation," says Abraham Shaked, MD, PhD, associate professor of surgery and senior author on the Nature Medicine report. "We were able to deliver the gene for a protein that blocks the immune system from attacking an engrafted organ, and we were able to do so with a single treatment that obviated the need for follow-up drug therapy. Taken together, these are exciting initial results that we're now working to extend."

In addition to Olthoff and Shaked, the remaining Penn-based coauthors are Thomas A. Judge, MD, Andrew E. Gelman, Xiu Da Shen, and Laurence A. Turka, MD. Wayne W. Hancock, MD, at Harvard Medical School is also a coauthor.

Primary grant funding for this work was provided by the National Institutes of Health. Additional support came from the Thomas B. McCabe Fund and the American Heart Association.

The University of Pennsylvania Medical Center's sponsored research ranks fifth in the United States, based on grant support from the National Institutes of Health, the primary funder of biomedical research in the nation -- $149 million in federal fiscal year 1996. In addition, for the second consecutive year, the institution posted the highest growth rate in its research activity -- 9.1 percent -- of the top ten U.S. academic medical centers during the same period. News releases from the University of Pennsylvania Medical Center are available to reporters by direct e-mail, fax, or U.S. mail, upon request. They are also posted electronically to the medical center's home page (http://www.med.upenn.edu) and to EurekAlert! (http://www.eurekalert.org), an Internet resource sponsored by the American Association for the Advancement of Science.
-end-


University of Pennsylvania School of Medicine

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.