Scientists home in on reasons behind cancer drug trial disappointment

January 30, 2015

Scientists based at the University of Helsinki, Finland, have discovered a 'hidden' mechanism which could explain why some cancer therapies which aim to block tumour blood vessel growth are failing cancer trials.

Numerous angiopoietin-blocking therapies, which work to starve the tumour of its blood supply, are currently in clinical trials for ovarian cancer and other cancers. But despite promising earlier results, some of these therapies are not improving patient survival as much as was expected. (See

Many current angiopoietin-blocking therapies work by inhibiting a specific cell pathway which promotes blood vessel growth. The pathway involves angiopoietin-1 and angiopoietin-2 proteins and also another protein, called Tie-2.

However this latest research, published in Nature Communications, suggests the existence of an alternative angiopoietin-mediated mechanism which 'bypasses' Tie-2.

Lead researcher, Dr Pipsa Saharinen, at the University of Helsinki said: "What we have found in our studies on cells and in mice, is another angiopoietin-2 mediated cell pathway, which usually works to destabilise blood vessels, but which also could promote blood vessel growth. This pathway is not necessarily targeted by current angiopoietin-blocking therapies, and this could help explain why some of the trials have not produced as much benefit as we might have hoped."

The same mechanism could play the role in the bacterial or viral septic shock - e.g. in Ebola fever - by destabilising the blood vessels, Dr Saharinen notes.

"We still need to confirm what we're seeing in normal cells is happening in tumors as well, and we have to figure out what actually happens inside the body. Then we can work out for sure how blocking this new angiopoietin 2 pathway affects tumour blood vessels," says Dr Saharinen.

"Ultimately, I think these results could help explain some of the confusing trial results we've seen."
The study was carried out at Wihuri Research Institute, University of Helsinki, University of Turku, and University of Oulu, and it was funded by the Academy of Finland, European Research Council (ERC), Leducq Foundation and Worldwide Cancer Research.

University of Helsinki

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to