New type of nanowires, built with natural gas heating

January 30, 2016

A team of Korean researchers, affiliated with UNIST has recently pioneered in developing a new simple nanowire manufacturing technique that uses self-catalytic growth process assisted by thermal decomposition of natural gas. According to the research team, this method is simple, reproducible, size-controllable, and cost-effective in that lithium-ion batteries could also benefit from it.

In their approach, they discovered that germanium nanowires are grown by the reduction of germanium oxide particles and subsequent self-catalytic growth during the thermal decomposition of natural gas, and simultaneously, carbon sheath layers are uniformly coated on the nanowire surface.

This study is a collaboration among scientists, including Prof. SooJin Park (School of Energy and Chemical Engineering) and Prof. Sang Kyu Kwak (School of Energy and Chemical Engineering), Dr. Sinho Choi (UNIST), Combined M.S./Ph.D. Student Dae Yeon Hwang (UNIST), and Researcher Jieun Kim (Korea Research Institute of Chemical Technology).

In a study, reported in the January 21, 2016 issue of Nano Letters, the team demonstrated a new redox-responsive assembly method to synthesize hierarchically structured carbon-sheathed germanium nanowires (c-GeNWs) on a large scale by the use of self-catalytic growth process assisted by thermally decomposed natural gas.

According to the team, this simple synthetic process not only enables them to synthesize hierachially assembled materials from inexpensive metal oxides at a larger scale, but also can likely be extended to other metal oxides as well. Moreover, the resulting hierarchically assembled nanowires (C-GeNWs) show enhanced chemical and thermal stability, as well as outstanding electrochemical properties.

The team states, "This strategy may open up an effective way to make other metallic/semiconducting nanomaterials via one-step synthetic reactions through an environmentally benign and cost-effective approach."
-end-
This work was supported by the Basic Science Research Program and Mid-Career Research Program through the National Research Foundation of Korea (NRF) grand, funded by the Korean government (MSIP).

Journal Reference: Sinho Choi, Jieun Kim, Dae Yeon Hwang, Hyungmin Park, Jaegeon Ryu, Sang Kyu Kwak* and Soojin Park* "Generalized redox-responsive assembly of carbon-sheathed metallic and semiconducting nanowire heterostructures". Nano Lett. (2016)

Ulsan National Institute of Science and Technology(UNIST)

Related Natural Gas Articles from Brightsurf:

Study reveals how to improve natural gas production in shale
A new hydrocarbon study contradicts conventional wisdom about how methane is trapped in rock, revealing a new strategy to more easily access the valuable energy resource.

A new material for separating CO2 from industrial waste gases, natural gas, or biogas
With the new material, developed at the University of Bayreuth, the greenhouse gas carbon dioxide (CO2) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for recycling.

Study of natural gas flaring finds high risks to babies
Researchers from USC and UCLA have found that exposure to flaring -- the burning off of excess natural gas -- at oil and gas production sites is associated with 50% higher odds of preterm birth, compared with no exposure.

Sweet or sour natural gas
Natural gas that contains larger amounts of hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)) is termed sour gas.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.

The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.

Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses

Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.

Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.

Read More: Natural Gas News and Natural Gas Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.