Nav: Home

First-ever GPS data release to boost space-weather science

January 30, 2017

Los Alamos, N.M., January 30, 2017 - Today, more than 16 years of space-weather data is publicly available for the first time in history. The data comes from space-weather sensors developed by Los Alamos National Laboratory on board the nation's Global Positioning System (GPS) satellites. The newly available data gives researchers a treasure trove of measurements they can use to better understand how space weather works and how best to protect critical infrastructure, such as the nation's satellites, aircraft, communications networks, navigation systems, and electric power grid.

"Space-weather monitoring instruments developed at Los Alamos have been fielded on GPS satellites for decades," said Marc Kippen, the Los Alamos program manager. "Today, 23 of the nation's more than 30 on-orbit GPS satellites carry these instruments. When you multiply the number of satellites collecting data with the number of years they've been doing it, it totals more than 167 satellite years. It's really an unprecedented amount of information."

Extreme space-weather events have the potential to significantly threaten safety and property on Earth, in the air, and in space. For example, the hazard of increased radiation exposure from charged particles released during a large solar flare could require that flights be diverted away from a polar route. Similarly, sudden bursts of plasma and magnetic field structures (coronal mass ejections, or CMEs) from the sun's atmosphere and high-speed solar wind could significantly disable large portions of the electric power grid. The resulting cascading failures could disturb air traffic control, disrupt the water supply, and interfere with life-saving medical devices.

In space, the charged particles measured by the Los Alamos-GPS sensors are the primary limit on how long a satellite can operate in space before succumbing to the damaging effects of radiation. In extreme events those particles can cause malfunction of satellites or even catastrophic failure of entire satellite systems. For example, in April 2010, a large magnetic disturbance resulted in a communications failure, causing a satellite to uncontrollably drift in space and presenting a hazard to nearby satellites. Currently, scientists are unable to predict when these extreme events will occur, how strong they will be, or how severe the effects will be. The release of Los Alamos-GPS data enables new studies that will help answer these questions.

The Los Alamos-GPS sensors continuously measure the energy and intensity of charged particles, mainly electrons and protons, energized and trapped in Earth's magnetic field. These trapped particles form the Van Allen radiation belts, which are highly dynamic--varying on time scales from minutes to decades. From GPS orbit (roughly 12,600 miles above Earth), satellite-borne sensors probe the largest radiation belt--consisting mainly of energetic electrons. Each of the 23 sensors in the current GPS constellation makes detailed measurements of the belts every six hours. Together the sensors provide 92 complete measurements of the belts every day. The newly released measurements constitute a nearly continuous global record of the variability in this radiation belt for the past 16 years, including how it responds to solar storms. The data provides an invaluable record for understanding radiation-belt variability that is key to developing effective space-weather forecasting models.

Los Alamos has been anticipating greater awareness of the nation's vulnerability to space weather since the 1990s, when it began aligning its space-weather research activities with its critical-infrastructure program. "This led to an awareness that we could expand the utility of our space-weather data to programs beyond the specific requirements they were designed for," said Kippen.

The public release of GPS energetic-particle data was conducted under the terms of an October 2016 White House Executive Order. It culminates years of work between the Office of Science and Technology Policy and the National Security Council to coordinate interagency efforts aimed at improved understanding, prediction and preparedness for potentially devastating space-weather events. The specific goal of releasing space-weather data from national-security assets such as GPS satellites is to enable broad scientific community engagement in enhancing space-weather model validation and improvements in space-weather forecasting and situational awareness.
-end-
The Los Alamos-GPS sensor data is hosted by the National Oceanic and Atmospheric Administration (NOAA) at: https://www.ngdc.noaa.gov/stp/space-weather/satellite-data/satellite-systems/, or by searching for "GPS Energetic Particles" at https://data.gov. The sensors are supported by the Department of Energy's National Nuclear Security Administration. A feature article providing an overview of the data was published today in Space Weather, a journal of the American Geophysical Union, as well as commentary by the Editor-in-Chief of the Space Weather journal.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction and solving problems related to energy, environment, infrastructure, health and global security concerns.

DOE/Los Alamos National Laboratory

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...