Nav: Home

Vitamin B12: Power broker to the microbes

January 30, 2017

RICHLAND, Wash. - Constant jostling for precious commodities -- money, oil, high-speed Internet access, our morning coffee -- shapes the world we live in.

It's no different for microbes, where scientists have found more evidence that vitamin B12, a substance produced by only a few organisms but needed by nearly all of them, wields great power in the microbial world. The findings lend credence to the idea that B12 helps shape microbial communities -- ubiquitous structures that affect energy and food production, the environment, human health, and many other processes.

Scientists at the Department of Energy's Pacific Northwest National Laboratory report their findings about B12's clout this week in the online early edition of the Proceedings of the National Academy of Sciences.

"Vitamin B12 has an importance to microbial communities even greater than has been anticipated," said chemist Aaron Wright, the corresponding author of the PNAS paper. "We're exploring the functions it controls and its importance for the organization of microbial communities."

Wright's team made the findings in a bacterium known as Halomonas sp. HL-48, a rare supplier of the vitamin in its microbial community. The sample in the study hails from a microbial mat -- a community in which microbes band together in layers -- in Hot Lake in northern Washington state. The Hot Lake microbial mat has dozens of community members, living together and trading nutrients like carbon and oxygen in hot, salty water, thick with growth of algae and other micro-organisms.

Scientists have known that vitamin B12 controls crucial genes and enzymes in microbes involved in building DNA and proteins. But several scientists, including Andrew Goodman at Yale and Michiko Taga at University of California at Berkeley, have found indications that B12 wields even broader influence.

Wright's team found that B12 interacts with 41 different proteins in the bacterium. They found that B12 is central to the regulation of folate, ubiquinone, and methionine -- substances crucial to the ability of microbial cells to create energy, build proteins, repair DNA, and to grow. The findings about methionine show an expanded influence of B12 compared to what has been known. The vitamin also changes the instructions it sends to genes depending on whether it's day or night -- not a surprise in a community of organisms for which light is a central driver.

"B12 is very expensive for any organism to make. It takes a lot of energy for a microbe to synthesize, since there are more than 30 biochemical steps required. That's a signal that the substance is highly valuable and carries out important functions," said Wright.

To make the findings, Wright's team created a chemical mimic of vitamin B12 that works just like the natural substance but which scientists can track more closely in living cells. Through a system called affinity-based protein profiling, Wright's group is able to tag the molecules to see precisely where they are active. Then the team uses techniques like mass spectrometry to identify and measure proteins of interest.
-end-
The work was funded by the U.S. Department of Energy Office of Science, with additional funding from the Russian Foundation for Basic Research and the Russian Academy of Sciences. The mass spectrometry-based measurements were performed at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility at PNNL. Authors of the paper also include scientists from the Sanford-Burnham-Prebys Medical Discovery Institute and Polytech Nice-Sophia.

Reference:

Margaret Romine, Dmitry Rodionov, Yukari Maezato, Lindsey Anderson, Premchendar Nandhikonda, Irina Rodionova, Alexandre Carre, Xiaoqing Li, Chengdong Xu, Therese Clauss, Young-Mo Kim, Thomas Metz, Aaron T. Wright, Elucidation of new roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism, Proceedings of the National Academy of Sciences, Jan. 30, 2017, http://dx.doi.org/10.1073/pnas.1612360114 (paper available upon publication).

DOE/Pacific Northwest National Laboratory

Related Bacterium Articles:

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.
Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.
Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.
Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.
How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.
The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.
Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).
The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.
Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.
Cancer prevention drug also disables H. pylori bacterium
A medicine currently being tested as a chemoprevention agent for multiple types of cancer has more than one trick in its bag when it comes to preventing stomach cancer, Vanderbilt researchers have discovered.
More Bacterium News and Bacterium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.