Nav: Home

Keeping antennas at peak performance

January 30, 2017

Advanced statistical techniques developed by KAUST researchers have enabled an efficient method for detecting the partial antenna failures that can inconspicuously degrade mobile communications1.

Modern antenna systems in mobile devices and transmission towers are increasingly being set up as arrays of antenna elements to increase performance, directionality, bandwidth and safety. For example, by adjusting the phase of individual antenna elements, the radiation pattern from an antenna array in a mobile phone can be directed away from the user for safety, while the radiation pattern from a transmission tower can be concentrated on a specific area for improved coverage.

Major faults in such systems are easily identified due to the sudden loss of wireless connection, but a fault in one element of an array system can be much more difficult to detect. Such partial failures, however, can significantly change the radiation pattern from the array, potentially seriously degrading network performance.

Assistant Professor of Applied Mathematics and Computational Science Ying Sun and her postdoc Fouzi Harrou from the University's Computer, Electrical and Mathematical Sciences and Engineering Division have now developed an efficient statistical technique to detect individual faults in antenna arrays.

"There is a demand for high-performance antenna array systems in numerous applications, such as radar surveillance, biomedical imaging, remote sensing, radio astronomy and satellite communications," said Sun. "However, individual antenna elements can develop faults due to the settling of dust particles, poor design, electronic failure, improper use or a shift in the position of the array element during installation. We want to be able to monitor arrays e?ciently to identify anomalies that could degrade the performance and reliability of the antenna system."

Rather than monitoring the elements individually, which would require the integration of additional and complex electronics into an already complex system, Sun and Harrou's method detects faults based on the change in the radiation pattern. Harrou explained by saying "We use what is called a generalized-likelihood ratio test to construct a control chart that can then be used as a reference to detect variations from the desired radiation pattern."

"The advantage of our approach is that it requires only one design parameter, making it easy to implement in real time due to its low-computational cost," said Harrou.

The researchers successfully demonstrated the sensitivity of their approach in a number of simulated scenarios, proving its potential for commercial application.

King Abdullah University of Science & Technology (KAUST)

Related Sun Articles:

Sun is less active than similar stars
By cosmic standards the sun is extraordinarily monotonous. This is the result of a study presented by researchers from the Max Planck Institute for Solar System Research in the upcoming issue of Science.
How plants protect themselves from sun damage
MIT chemists have observed, for the first time, one of the possible mechanisms that have been proposed for how plants dissipate energy when they are exposed to excess sunlight.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
View of the Earth in front of the Sun
An international research team led by the University of Göttingen has discovered two new Earth-like planets near one of our closest stars.
As hot as the sun's interior
Physicists at the Friedrich Schiller University Jena (Germany) have developed a new method for producing plasma, enabling them to deal with some of the problems that stand in the way of this extremely difficult process.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Evidence for a new fundamental constant of the sun
New research undertaken at Northumbria University, Newcastle, shows that the sun's magnetic waves behave differently than currently believed.
Freshwater turtles navigate using the sun
Blanding's turtle hatchlings need only the sun as their compass to guide them on their way to the nearest wetland -- and a place of safety.
A RAVAN in the sun
While people across the nation gazed at August's total solar eclipse from Earth, a bread loaf-sized NASA satellite had a front row seat for the astronomical event.
Sun erupts with significant flare
The sun emitted a significant, X8.2-class solar flare, peaking at 12:06 p.m.
More Sun News and Sun Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.