Nav: Home

Animal genetics: The bovine heritage of the yak

January 30, 2017

Though placid enough to be managed by humans, yaks are robust enough to survive at 4000 meters altitude. Genomic analyses by researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich show that yak domestication began several millennia ago and was promoted by repeated crosses with cattle.

The first systematic genome-wide comparison of the genetic heritage of yaks and cattle shows that about 1.5% of the genome of Mongolian yaks is derived from domesticated cattle. While male hybrids are sterile, hybrid females can be backcrossed to male yaks for several generations, which allows for the stable introgression of short regions of bovine chromosomes into the yak genome. The results of the new study suggest that yak hybridization began thousands of years ago. Dr. Ivica Medugorac, who heads a research group in population genomics at the Chair of Animal Genetics and Husbandry at LMU, is the first and corresponding author on the new paper, which appears in the journal Nature Genetics. "Our results indicate that hybridization between yaks and cattle began more than 1500 years ago, and has continued with varying intensity ever since," Medugorac says, and points out that written records also testify to early hybridization of yaks by Mongolian breeders.

In collaboration with Dr. Aurélien Capitan of the Université Paris-Saclay, Dr. Stefan Krebs of the Laboratory for Functional Genome Analysis at LMU's Gene Center and colleagues from other European, American and Mongolian institutions, Medugorac has mapped the distribution of cattle genes in the yak genome. "Many of the genetic variants in the yak that can be traced back to cattle are found at gene loci that are known to play roles in the development and function of the nervous system. They have an impact on sensory perception, cognition and social behavior. Evidently, over a period of several thousands of years, Mongolian breeders succeeded in speeding up the domestication of the yak by crossing them with cattle, which had been domesticated thousands of years before," he explains. Furthermore, the traits that enable yaks to survive at high altitudes, in mountain ranges such as the Altai, the Pamirs and the Himalayas have obviously been retained during this process.

In the course of the study, the researchers identified a gene variant in Mongolian cattle and yaks that is responsible for the loss of horns. "We were able to show that this variant had been introduced into yaks from the domesticated Mongolian Turano cattle long ago," Medugorac says. Lack of horns (known as 'polledness') is, however, only one of the traits with which yak breeders attempted to tame the ferocious temper of the yaks. Interestingly, the polled variant in the Mongolian Turano cattle differs from the mutations known to be responsible for polledness in European cattle, which had previously been molecularly characterized by Medugorac's group in 2012 and 2014. These findings are already being exploited by breeders worldwide to select for polled cattle in order to avoid the painful procedure of dehorning.
-end-


Ludwig-Maximilians-Universität München

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...