Nav: Home

Move over Bear Grylls! Academics build ultimate solar-powered water purifier

January 30, 2017

BUFFALO, N.Y. -- You've seen Bear Grylls turn foul water into drinking water with little more than sunlight and plastic.

Now, academics have added a third element -- carbon-dipped paper -- that may turn this survival tactic into a highly efficient and inexpensive way to turn saltwater and contaminated water into potable water for personal use.

The idea, which could help address global drinking water shortages, especially in developing areas and regions affected by natural disasters, is described in a study published online today (Jan. 30, 2017) in the journal Global Challenges.

"Using extremely low-cost materials, we have been able to create a system that makes near maximum use of the solar energy during evaporation. At the same time, we are minimizing the amount of heat loss during this process," says lead researcher Qiaoqiang Gan, PhD, associate professor of electrical engineering in the University at Buffalo School of Engineering and Applied Sciences.

Additional members of the research team are from UB's Department of Chemistry, Fudan University in China, the University of Wisconsin-Madison and the lab of Gan, who is a member of UB's New York State Center of Excellence in Materials Informatics and UB's RENEW Institute, an interdisciplinary institute dedicated to solving complex environmental problems.

Solar vapor generator


To conduct the research, the team built a small-scale solar still. The device, which they call a "solar vapor generator," cleans or desalinates water by using the heat converted from sunlight. Here's how it works: The sun evaporates the water. During this process, salt, bacteria or other unwanted elements are left behind as the liquid moves into a gaseous state. The water vapor then cools and returns to a liquid state, where it is collected in a separate container without the salt or contaminants.

"People lacking adequate drinking water have employed solar stills for years, however, these devices are inefficient," says Haomin Song, PhD candidate at UB and one of the study's leading co-authors. "For example, many devices lose valuable heat energy due to heating the bulk liquid during the evaporation process. Meanwhile, systems that require optical concentrators, such as mirrors and lenses, to concentrate the sunlight are costly."

The UB-led research team addressed these issues by creating a solar still about the size of mini-refrigerator. It's made of expanded polystyrene foam (a common plastic that acts as a thermal insulator and, if needed, a flotation device) and porous paper coated in carbon black. Like a napkin, the paper absorbs water, while the carbon black absorbs sunlight and transforms the solar energy into heat used during evaporation.

The solar still coverts water to vapor very efficiently. For example, only 12 percent of the available energy was lost during the evaporation process, a rate the research team believes is unprecedented. The accomplishment is made possible, in part, because the device converts only surface water, which evaporated at 44 degrees Celsius.

Efficient and inexpensive


Based upon test results, researchers believe the still is capable of producing 3 to 10 liters of water per day, which is an improvement over most commercial solar stills of similar size that produce 1 to 5 liters per day.

Materials for the new solar still cost roughly $1.60 per square meter -- a number that could decline if the materials were purchased in bulk. (By contrast, systems that use optical concentrators can retail for more than $200 per square meter.) If commercialized, the device's retail price could ultimately reduce a huge projected funding gap -- $26 trillion worldwide between 2010 and 2030, according to the World Economic Forum -- needed for water infrastructure upgrades.

"The solar still we are developing would be ideal for small communities, allowing people to generate their own drinking water much like they generate their own power via solar panels on their house roof," says Zhejun Liu, a visiting scholar at UB, PhD candidate at Fudan University and one the study's co-authors.
-end-
The research was funded, in part, by the U.S. National Science Foundation, the National Science Foundation of China and the Chinese Scholarship Council.

University at Buffalo

Related Solar Energy Articles:

Air pollution casts shadow over solar energy production
Global solar energy production is taking a major hit due to air pollution and dust.
Freshwater from salt water using only solar energy
A federally funded research effort to revolutionize water treatment has yielded a direct solar desalination technology that uses energy from sunlight alone to heat salt water for membrane distillation.
New technology will enable properties to share solar energy
New technology will enable properties to share solar energy and will mean low energy bills for consumers.
Solar paint offers endless energy from water vapor
Researchers in Melbourne, Australia, have developed a compound that draws moisture from the air and splits it into oxygen and hydrogen.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
Bio-inspired energy storage: A new light for solar power
Inspired by the western Swordfern, a groundbreaking prototype could be the answer to the storage challenge still holding solar back as a total energy solution.
The economic case for wind and solar energy in Africa
To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.
The beating heart of solar energy
Using solar cells placed under the skin to continuously recharge implanted electronic medical devices is a viable one.
How plants manage excess solar energy
Life on earth largely depends on the conversion of light energy into chemical energy through photosynthesis by plants.
New maps show where to generate solar energy in South Carolina
Amanda Farthing and the team at Clemson University created maps showing which lands in South Carolina would be most suitable for generating solar energy at utility scale.

Related Solar Energy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...