Nav: Home

Deciphering the emergence of neuronal diversity

January 30, 2017

The development of cerebral cortex plays a major role in the evolution of species and in particular for mankind. This is why scientists are studying the emergence of its cellular microstructure with high resolution methods. Neuroscientists at the University of Geneva (UNIGE), Switzerland, have analysed the diversity of cortical neurons -- more precisely inhibitory interneurons -- during the developmental period surrounding birth. They have discovered the emergence of three main sub-groups of interneurons by decoding the expression of cell-type specific genes as well as their exact, and often unexpected, location in the cortex. These results, which can be read in Nature Communications, will open the door to a more accurate understanding of the complex cell-type specific mechanisms underlying neuro-developmental disorders such as autism and schizophrenia. This should help researchers in discovering how psychiatric-related genetic disturbances impact the emergence of neuronal sub-types and how to design novel cell-type specific interventions.

Our cerebral cortex comprises two main types of neurons: excitatory neurons (80%), which generate cortical activity, and inhibitory interneurons (20%), which fine-tune this activity. Cortical brain function therefore depends on this neuronal diversity made up of numerous excitatory and inhibitory interneuron sub-groups. The team of Alexandre Dayer, Professor in the Departments of Psychiatry and Fundamental Neurosciences at UNIGE's Faculty of Medicine, studied inhibitory neurons during the embryonic and early postnatal phase just after birth. In adults, over 20 interneuron sub-types have been identified. But when do they appear? When do they differentiate themselves?

"To discover this, we used transgenic mice, where specific types of inhibitory interneurons were labelled by fluorescent molecules. These fluorescent cells were studied during early development, just before the birth of the mouse and a few days after. Using a technique called fluorescence activated cell sorting, labelled neurons were isolated from the cerebral cortex and the genetic code of each of these neurons was analysed using single-cell transcriptomics," explains Alexandre Dayer. Thus, the molecular diversity of cell types is currently being dissected thanks to tools providing access to the gene expression landscape of individual cells at a given point in time during development.

Following gene sequencing of all these unique cells, bioinformatics tools allow scientists to identify distinct sub-groups of interneurons and to track the timing of their emergence during the early postnatal period. They also discovered that the location of these inhibitory interneuron sub-types varied depending on their genetic identity. "What is surprising is that one of the identified sub-groups was located in the cortical white matter, and not in the grey matter, as is usually the case," adds Professor Dayer. Indeed, the cortical white matter contains numerous fibres which transmit neuronal activity information from one cortical region to the other. The UNIGE neuroscientists, still need to discover what role this specific interneuron sub-group plays in the white matter and also how the large diversity of inhibitory interneurons appears over time.

A new database

A detailed analysis of the cell-type specific gene expression patterns belonging to these three main inhibitory interneuron sub-groups, is available to the scientific community online. This research is important when studying neuro-developmental disorders since cortical interneurons are a privileged target in psychiatric illnesses such as autism and schizophrenia. "Thanks to single-cell transcriptomics, we were able to map gene expression patterns for each cell at a given time during normal development. Hereafter, we can use this large reference database to determine how developmental disorders specifically affect individual cell types during the course of development," explains Alexandre Dayer. Cortical interneurons play a key role in the physio-pathology of psychiatric disorders. It is now necessary to determine when and how psychiatric-associated risk genes affect interneuron subtypes and to test therapies which could directly target specific cell types during developmental time windows. This is the direction that Professor Dayer's team will be taking in their future work within the framework of the National Research Centre - Synapsy.
-end-


Université de Genève

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.