Nav: Home

Preventing blood clots with a new metric for heart function

January 30, 2017

The heart is a wonder of design - a pump that can function for 80 years, and billions of heartbeats, without breaking down. But when it does malfunction, the results can be dire.

In research reported in the International Journal of Cardiology this month, scientists from Johns Hopkins University and Ohio State presented a new method for predicting those most at risk for thrombus, or blood clots, in the heart.

The critical factor, the researchers found, is the degree to which the mitral jet - a stream of blood shot through the mitral valve - penetrates into the left ventricle of the heart. If the jet doesn't travel deep enough into the ventricle, it can prevent the heart from properly flushing blood from the chamber, potentially leading to clots, strokes and other dangerous consequences.

The findings were based on simulations performed using the Stampede supercomputer at the Texas Advanced Computing Center and validated using data from patients who both did and did not experience post-heart attack blood clots. The work was supported by grants from the National Science Foundation.

The metric that characterizes the jet penetration, which the researchers dub the E-wave propagation index (EPI), can be ascertained using standard diagnostic tools and clinical procedures that are currently used to assess patient risk of clot formation, but is much more accurate than current methods.

"The beauty of the index is that it doesn't require any additional measurements. It simply reformulates echocardiogram data into a new metric," said Rajat Mittal, a computational fluid dynamics expert and professor of engineering at Johns Hopkins University and one of the principal investigators on the research. "The clinician doesn't have to do any additional work."

Heart disease is the leading cause of death in the U.S. and by far the most expensive disease in terms of health care costs. Heart attacks cause some deaths; others result from blood clots, frequently the result of a heart weakened by disease or a traumatic injury.

Clots can occur whenever blood remains stagnant. Since the chambers of the heart are the largest reservoirs of blood in the body, they are the areas most at risk for generating clots.

Predicting when a patient is in danger of developing a blood clot is challenging for physicians. Patients recovering from a heart attack are frequently given anticoagulant drugs to prevent clotting, but these drugs have adverse side-effects.

Cardiologists currently use the ejection fraction - the percentage of blood flushed from the heart with each beat - as well as a few other factors, to predict which patients are at risk of a future clot.

For healthy individuals, 55 to 70 percent of the volume of the chamber is ejected out of the left ventricle with every heartbeat. For those with heart conditions, the ejection fraction can be reduced to as low as 15 percent and the risk of stagnation rises dramatically.

Though an important factor, the ejection fraction does not appear to be an accurate predictor of future clotting risk.

"Because we understood the fluid dynamics in the heart using our computational models, we reached the conclusion that the ejection fraction is not a very accurate measure of flow stasis in the left ventricle," Mittal said. "We showed very clearly that the ejection fraction is not able to differentiate a large fraction of these patient and stratify risk, whereas this E-wave propagation index can very accurately stratify who will get a clot and who will not," he said.

The results were the culmination of many years of investigation by Mittal and his collaborators into the fundamental relationship between the structure and function of the heart. To arrive at their hypothesis, the researchers captured detailed measurements from 13 patients and used those to construct high-fidelity, patient-specific models of the heart that take into account fluid flow, physical structures and bio-chemistry.

These models led, in turn, to new insights into the factors that correlate most closely to stagnation in the left ventricle, chief among them, mitral jet penetration.

Working in collaboration with clinicians, including lead author, Thura Harfi of Ohio State University, the team tested their hypothesis using data from 75 individual -- 25 healthy patients, 25 patients who experienced clots in their left ventricle, and 25 patients who had a compromised heart but who didn't have any clots.

Pending validation in a larger cohort of patients, the researchers found that based on the EPI measurement, one in every five patients with severe cardiomyopathy who are currently not being treated with anticoagulation, would be at risk of a left ventricular clot and would benefit from anticoagulation.

"Physicians and engineers don't interact as often as they should and that creates a knowledge gap that can be closed with this type of collaborative research," Harfi said. "Computational fluid dynamics is such an established way of studying phenomena in mechanical engineering, but has rarely been tried in humans. But now, with the development of high-resolution cardiac imaging techniques like cardiac computed tomography (CT) and the availability of supercomputing power, we can apply the power of computational fluid dynamics simulations to study blood flow in human beings. The information you get from a computer simulation you cannot get otherwise."

Mittal and his team required large computing resources to derive and test their hypothesis. Each simulation ran in parallel on 256 to 512 processors and took several 100,000 computing hours to complete.

"This work cannot be done by simulating a single case. Having a large enough sample size to base conclusions on was essential for this research," Mittal said. "We could never come close to being able to do what we needed to do it if weren't for Stampede."

Mittal foresees a time where doctors will perform patient-specific heart simulations routinely to determine the best course of treatment. However, hospitals would need systems hundreds of times faster than a current desktop computer to be able to figure out a solution locally in a reasonable timeframe.

In addition to establishing the new diagnostic tool for clinicians, Mittal's research helps advance new, efficient computational models that will be necessary to make patient-specific diagnostics feasible.

The team plans to continue to test their hypothesis, applying the EPI metric to a larger dataset. They hope in the future to run a clinical study with prospective, rather than retrospective, analysis.

With a better understanding of the mechanics of blood clots and ways to the predict them, the researchers have turned their attention to other sources of blood clots, including bio-prosthetic heart valves and atrial fibrillation (AFib) - a quivering or irregular heartbeat that affects 2.7 million Americans.

"These research results are an important first step to move our basic scientific understanding of the physics of how blood flows in the heart to real-time predictions and treatments for the well-being of patients," said Ronald Joslin, NSF Fluid Dynamics program director.

"The potential for impact in this area is very motivating," Mittal said, "not just for me but for my collaborators, students and post-docs as well."
-end-


University of Texas at Austin, Texas Advanced Computing Center

Related Blood Clots Articles:

Researchers find new way to detect blood clots
Researchers in the Department of Biomedical Engineering at Texas A&M University are working on an entirely new way to detect blood clots, especially in pediatric patients.
High rate of blood clots in COVID-19
COVID-19 is associated with a high incidence of venous thromboembolism, blood clots in the venous circulation, according to a study conducted by researchers at Brighton and Sussex Medical School (BSMS), UK.
New tool helps distinguish the cause of blood clots
A new tool using cutting-edge technology is able to distinguish different types of blood clots based on what caused them, according to a study published today in eLife.
Hookah smoke may be associated with increased risk of blood clots
In a new study conducted in mice, researchers found that tobacco smoke from a hookah caused blood to function abnormally and be more likely to clot and quickly form blood clots.
Reducing the risk of blood clots in artificial heart valves
People with mechanical heart valves need blood thinners on a daily basis, because they have a higher risk of blood clots and stroke.
New study finds blood clots more likely in children who receive PICCs
A new study provides convincing evidence that the use of peripherally inserted central catheters (PICCs) to administer medicine and draw blood in children is associated with a significantly increased risk of blood clots (known as venous thromboembolism or VTE) compared with central venous catheters (CVCs) placed directly into the neck or chest.
New study provides insight into the mechanisms of blood clots in cancer patients
Researchers have identified a potential new signaling pathway that may help further the understanding of blood clot formation in cancer patients and ultimately help prevent this complication from occurring.
Cellular senescence is associated with age-related blood clots
Cells that become senescent irrevocably stop dividing under stress, spewing out a mix of inflammatory proteins that lead to chronic inflammation as more and more of the cells accumulate over time.
One in five haematological cancer patients suffer blood clots or bleeding
In the years following haematological cancer, one in five survivors suffer a blood clot or bleeding which requires hospital treatment.
Targeting inflammation to better understand dangerous blood clots
Forty percent of people who develop venous thromboembolism don't know what caused it.
More Blood Clots News and Blood Clots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.