Nav: Home

Pancreatic cancer: Gene duplication explains tumor aggressiveness

January 30, 2018

Pancreatic cancer is a form of cancer associated with the highest mortality rates in the world. Genetic changes that could explain his aggressiveness and early metastasis had not been found yet. A team at Technical University of Munich has now shown that those characteristics can be explained by specific gene amplifications which occur along various evolutionary pathways of the cancer. Based on this discovery, they have derived basic principles underlying the biology of pancreatic cancer.

Until now, scientists have failed to establish a link between the properties of pancreatic cancer, such as its aggressiveness, and changes, i.e. mutations, in the tumor's genome. Moreover, pancreatic cancer forms metastases much faster than other types of cancer. Here too, the genetic causes are unclear.

A team headed by Professor Roland Rad and Professor Dieter Saur of TUM University Hospital rechts der Isar and the German Cancer Consortium has taken an important step towards solving both mysteries. With the help of various mouse models for pancreatic cancer, they have succeeded in elucidating the molecular pathways of tumor development in detail and have gained a better understanding of how various characteristics of the disease arise. The study was published in the journal Nature.

Tumor cells have multiple defective copies of a cancer gene

Healthy cells in humans possess two copies of each gene. For their experiments, the researchers mutated one of the two copies of the KRAS gene in mice. The gene plays a key role in cellular proliferation and is activated in 90% of all human pancreatic tumors. Such genes are referred to as oncogenes. The team headed by Roland Rad made a surprising discovery: The mutant gene was often duplicated even in very early stages of the cancer. In cases where a tumor had not doubled the mutated KRAS gene copy, the researchers discovered duplications in other cancer genes.

"It therefore appears that the cell amplifies the growth signal due to the presence of extra gene copies. This model of dosage amplification during tumor development had not previously been considered," says Sebastian Müller, lead author of the study. "We also showed that as the number of mutant KRAS copies increases, the tumor's aggressiveness and ability to metastasize also increases."

Disruption of endogenous protective mechanisms determines the evolution of the cancer

Normally, healthy cells have their own protective mechanisms to prevent mutations from accumulating. So how could the cells develop such dosage amplification without being prevented from doing so?

"This shows the importance of mouse models, which allow us to closely observe and experimentally review the extraordinarily complex processes of cancer development at the molecular level: from healthy cells to cancer precursors through to aggressive tumors and their spread to other organs," Professor Dieter Saur explains.

After the KRAS mutation was induced by the researchers, other mutations in what are known as tumor suppressor genes developed. A healthy cell possesses a whole series of such protective genes to prevent cancer from developing. A significant finding by the team was that either the mutant KRAS gene or another cancer gene is amplified, depending on which tumor suppressor gene is affected and to what degree its function is impaired.

Key developmental stages explained

Only after the cell's inbuilt protective mechanisms have been switched off and dosage amplification occurs does a tumor ultimately form. Which pathway the cell follows, and which genes are involved then largely determine the characteristics of a pancreatic tumor.

For the first time, the dosage amplification model allows us to identify genetic patterns that explain a tumor's aggressiveness and metastasis. "We have indications that our discovery constitutes a fundamental principle in the development of tumors and plays an essential role in other cancers. We're now investigating the extent to which these new insights into cancer biology can be used to develop new therapeutic strategies," says Professor Roland Rad, explaining the team's next research goals.
-end-
The following institutions contributed to the study: Technical University of Munich (Central Institute of Translational Cancer Research, Clinic and Policlinic for Internal Medicine II, Institute of Pathology), DKTK and DKZF Heidelberg; The Wellcome Trust Sanger Institute, Cambridge; Ludwig-Maximilians Universität (Anthropology & Human Genomics und Innere Medizin II des Klinikums Großhadern), Helmholtz Zentrum München (Research Unit Radiation Cytogenetics); Universidad de Oviedo (Bioquímica y Biología Molecular, IUOPA und CINN-CSIC), Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, University of Cambridge (Department of Veterinary Medicine), Instituto de Medicina Oncológica y Molecular de Asturias, Instituto de Biomedicina y Biotecnología de Cantabria.

Original publication

S. Mueller, T. Engleitner, R. Maresch, M. Zukowska, S. Lange, T. Kaltenbacher, B. Konukiewitz, R. Öllinger, M. Zwiebel, A. Strong, H.-Y. Yen, R. Banerjee, S. Louzada, B. Fu, B. Seidler, J. Götzfried, K. Schuck, Z. Hassan, A. Arbeiter, N. Schönhuber, S. Klein, C. Veltkamp, M. Friedrich, L. Rad, M. Barenboim, C. Ziegenhain, J. Hess, O. M. Dovey, S. Eser, S. Parekh, F. Constantino-Casas, J. de la Rosa, M. I. Sierra, M. Fraga, J. Mayerle, G. Klöppel, J. Cadiñanos, P. Liu, G. Vassiliou, W. Weichert, K. Steiger, W. Enard, R. M. Schmid, F. Yang, K. Unger, G. Schneider, I. Varela, A. Bradley, D. Saur, R. Rad, Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes, Nature, 201, DOI: 10.1038/nature25459 https://www.nature.com/articles/nature25459

Contact

Prof. Dr. med. Roland Rad
Clinic and Policlinic for Internal Medicine II
University Hospital rechts der Isar of the Technical University of Munich
Tel.: (0?89) 41?40?-?43?74
roland.rad@tum.dehttp://www.tum.de

More information

Research Group of Roland Rad https://www.med2.mri.tum.de/en/research/ag-rad.php

Research Group of Dieter Saur https://www.med2.mri.tum.de/en/research/ag-saur.php#

German language version https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/34426/

Technical University of Munich (TUM)

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".