Nav: Home

Viruses prefer cultivated areas to natural areas

January 30, 2018

Agriculture has a considerable influence on the distribution and prevalence of plant viruses in the environment. In cultivated areas, viral infections are significantly more frequent than in natural areas. This is the conclusion of a study conducted by a team of international scientists in the Camargue (France) and in the Western Cape regions (South Africa), the results of which were published in January in The ISME Journal. "The clustering and concentration of genetically similar organisms, as with crop varieties, fuel epidemics", explains Philippe Roumagnac, a researcher in plant virology at CIRAD. This study also indicates that the "natural compartment", which is still largely unexplored in terms of the biodiversity of microorganisms, contains a large number of viruses. "The areas adjacent to agricultural land could enable us to better understand the emergence of plant diseases" , he says.

Exploring the diversity of plant viruses and understanding their emergence

Although 50% of emerging plant diseases are viral, knowledge of the diversity of plant viruses is still dramatically lacking. Officially, to date, around 1 400 species of plant viruses have been characterised and taxonomically assigned. This figure is probably well below the true diversity of plant viruses, as shown by recent explorations of terrestrial and marine ecosystems. Moreover, this count is undoubtedly distorted on two levels. First, the description of viruses has been conducted almost exclusively based on a very small number of cultivated plant species and, second, most of the viruses were only characterised further to the appearance of symptoms in their hosts. "Our knowledge of the world of plant viruses therefore remains extremely partial in terms of diversity, but also in terms of distribution at the agroecosystem level" , says Denis Filloux, a researcher in plant virology at CIRAD. "This lack of knowledge is an obstacle to our understanding of the global functioning of agroecosystems, and to the definition and quantification of risk factors in the emergence of new plant viral diseases or the design of strategies to tackle these diseases" . The majority of the viruses remaining to be identified are found in areas with little human activity.

A France-South Africa collaboration within the framework of European funding

This research, initially financed by CIRAD, the Fondation pour la Recherche sur la Biodiversité (FRB - Foundation for Research on Biodiversity), the INRA metaprogramme Meta-omics and Microbial Ecosystems and the French Directorate General of Armaments, took on an international dimension thanks to European Union funding and a Marie Curie grant. The sampling and high-throughput sequencing data analysis work was achieved through a partnership with the University of Cape Town.

New viral metagenomics approaches

To achieve this result, the team of international scientists adopted a new viral metagenomics approach. "Metagenomics is a method that conducts high-throughput sequencing on all genomes of the microbes populating a given environment" , explains Philippe Roumagnac. "It enables us, for example, to access the virome, in other words all of the viral sequences contained in a host organism or in a sample containing several potential hosts." Since 2009, a new generation of metagenomics research has emerged in plant pathology, making it possible to not only analyse the overall genome of an ecosystem or organism, but also to directly link sequences of pathogenic agents to their host and/or to a geographical position. This original research in spatial metagenomics has revolutionised our view of plant virus distribution by revealing that many of the plants analysed were virus-infected.


Related Diversity Articles:

Revealing Aspergillus diversity for industrial applications
In a Feb. 14, 2017 study published in Genome Biology, an international team report sequencing the genomes of 10 novel Aspergillus species, which were compared with the eight other sequenced Aspergillus species.
Important to maintain a diversity of habitats in the sea
Researchers from University of Gothenburg and the Swedish University of Agricultural Sciences (SLU) show that both species diversity and habitat diversity are critical to understand the functioning of ecosystems.
Discovering what shapes language diversity
A research team led by Colorado State University is the first to use a form of simulation modeling to study the processes that shape language diversity patterns.
Making the switch to polarization diversity
New silicon photonic chip that offers significant improvement to the optical switches used by fiber optic networks to be presented at OFC 2017 in Los Angeles.
Deciphering the emergence of neuronal diversity
Neuroscientists at UNIGE have analysed the diversity of inhibitory interneurons during the developmental period surrounding birth.
Epigenetic diversity in childhood cancer
Tumors of the elderly carry many DNA mutations that can influence disease course.
Diversity without limits
Now, researchers at Temple and Oakland universities have completed a new tree of prokaryotic life calibrated to time, assembled from 11,784 species of bacteria.
Threatened by diversity
Psychologist Brenda Major identifies what may be a key factor in many white Americans' support for Donald Trump.
Diversity as natural pesticide
Monoculture crops provide the nutrient levels insect pests crave, explains a study led by the University of California, Davis, in the journal Nature. Returning plant diversity to farmland could be a key step toward sustainable pest control.
A missing influence in keeping diversity within the academy?
A new study of science Ph.D.s who embarked on careers between 2004 and 2014 showed that while nearly two-thirds chose employment outside academic science, their reasons for doing so had little to do with the advice they received from faculty advisors, other scientific mentors, family, or even graduate school peers.

Related Diversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".