Nav: Home

Chemists follow molecules down 'nanowells,' track catalytic reactions in nanoconfinement

January 30, 2018

AMES, Iowa - Chemists have measured the effects of nanoconfinement in catalysis by tracking single molecules as they dive down "nanowells" and react with catalysts at the bottom.

The wells in these experiments are just an average 2.3 billionths of a meter wide and about 80 to 120 billionths of a meter deep. These tiny channels provide access to a platinum catalyst sandwiched between the solid cores and porous shells of silica spheres. And they're helping a team of chemists understand how such nanoconfinement of catalysts affects reactions.

Previous studies of the reactions have been limited to theoretical work with simplified models and experiments following a collection of molecules. This study was able to collect single-molecule data because the experiment created a fluorescent molecule that could be lit, imaged and tracked - even in nanoconfinement.

"This nanoconfinement effect is not well understood, especially at a quantitative level," said Wenyu Huang, an Iowa State University associate professor of chemistry and an associate of the U.S. Department of Energy's Ames Laboratory.

A new paper recently published online by the journal Nature Catalysis reports that, in this case, "the reaction rate is significantly increased in the presence of nanoconfinement," wrote Huang and a team of co-authors.

Huang and Ning Fang, an associate professor of chemistry at Georgia State University in Atlanta, are lead authors of the paper. A three-year, $550,000 grant from the National Science Foundation supported the project.

Huang's Iowa State lab created, studied and described the multi-layered spheres and their nanowells of prescribed length. Fang's lab at Georgia State used laser and microscopic imaging technology to track the molecules and measure the reactions.

That was a major challenge for the researchers. Such measurements had never been taken experimentally "due to the seemingly insurmountable technical challenges of tracking single molecules dynamically in complex nanoporous structures under reaction conditions," the chemists wrote in their paper.

They, however, devised an experimental technique that successfully tracked more than 10,000 molecule trajectories of a model catalytic reaction. (The reaction involved a molecule called amplex red reacting with hydrogen peroxide on the surface of platinum nanoparticles to generate a product molecule called resorufin, which is a highly fluorescent molecule.)

In addition to finding that nanoconfinement increased the reaction rate, the experiments showed there was less adhesion of the molecules to the surface of the platinum nanoparticles.

Now that they have demonstrated their experimental techniques and made initial conclusions, the chemists plan to expand their project.

"Once we understand this model, we can look at more complicated reactions," Huang said.

And that could lead to better catalysts.

As the chemists wrote in their paper, "This work paves the way for research to quantitatively differentiate, evaluate and understand the complex nanoconfinement effects on dynamic catalytic processes, thus guiding the rational design of high-performance catalysts."
-end-
The research team

In addition to Iowa State's Wenyu Huang and Georgia State's Ning Fang, co-authors of the paper describing catalytic processes in nanoconfinement are:

Yuchen Pei, Tian Wei Goh and Zhiyuan Qi, Iowa State doctoral students who are also affiliated with the U.S. Department of Energy's Ames Laboratory; Chaoxian Xiao, an Iowa State postdoctoral research associate; Bin Dong and Kuangcai Chen, Georgia State postdoctoral research associates; and Fei Zhao, a Georgia State graduate student.

Read the paper

In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement, https://www.nature.com/articles/s41929-017-0021-1, doi:10.1038/s41929-017-0021-1

Iowa State University

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with Legos® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".