Nav: Home

How transcription factors explore the genome

January 30, 2019

Transcription factors (TFs) are proteins that regulate the transcription of genes, which is the first step in making a protein. The way TFs work is by searching the entire genome and binding to specific regions that regulate genes, turning them "on" or "off". TFs are known to not only bind to specific sequences of DNA, but also to non-specifically bind to any stretch of DNA.

This non-specific association can drastically increase the ability of TFs to find their specific target sites by allowing them to slide along DNA. However, we do not understand how the more than 1,500 human TFs vary in their efficiency to scan the massive genome, locate and bind specific sites.

Now, the lab of David Suter at EPFL's Institute of Bioengineering has found a way to predict the efficiency with which different TFs scan the genome in living cells. The scientists studied 501 TFs in the mouse by looking at how they bind to "mitotic" chromosomes, a property that has been linked to the ability of TFs to associate with DNA in a non-specific manner.

Using photobleaching experiments and single molecule imaging, the scientists found that TFs movements in the nucleus and the efficiency at which they find their binding sites can be predicted by mitotic chromosome binding.

By combining these experiments with the TF mapping in the whole genome, they found that different TFs vary by three orders of magnitude in their ability to find their sites. Thus, TF with strong non-specific DNA binding properties associate with mitotic chromosomes, move slowly in the nucleus and are particularly efficient at finding the specific sequences they need to bind to regulate gene expression.

"Transcription factors differ largely in their ability to scan the genome to find their specific binding sites, and these differences can be predicted by simply looking at how much they bind to mitotic chromosomes," says David Suter. "Transcription factors that are the most efficient in searching the genome could be able to drive broad changes in gene expression patterns even when expressed at low concentrations, and can therefore be particularly important for cell fate decision processes."
-end-
Other contributors

Ulm University

Reference

Mahé Raccaud, Elias T. Friman, Andrea B. Alber, Harsha Agarwal, Cédric Deluz, Timo Kuhn, J. Christof M. Gebhardt, David M. Suter. Mitotic chromosome binding predicts transcription factor properties in interphase. Nature Communications 30 January 2019. DOI: 10.1038/s41467-019-08417-5.

Ecole Polytechnique Fédérale de Lausanne

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.