Waterproof graphene electronic circuits

January 30, 2019

Water molecules distort the electrical resistance of graphene, but a team of European researchers has discovered that when this two-dimensional material is integrated with the metal of a circuit, contact resistance is not impaired by humidity. This finding will help to develop new sensors -the interface between circuits and the real world- with a significant cost reduction.

The many applications of graphene, an atomically-thin sheet of carbon atoms with extraordinary conductivity and mechanical properties, include the manufacture of sensors. These transform environmental parameters into electrical signals that can be processed and measured with a computer.

Due to their two-dimensional structure, graphene-based sensors are extremely sensitive and promise good performance at low manufacturing cost in the next years.

To achieve this, graphene needs to make efficient electrical contacts when integrated with a conventional electronic circuit. Such proper contacts are crucial in any sensor and significantly affect its performance.

But a problem arises: graphene is sensitive to humidity, to the water molecules in the surrounding air that are adsorbed onto its surface. H2O molecules change the electrical resistance of this carbon material, which introduces a false signal into the sensor.

However, Swedish scientists have found that when graphene binds to the metal of electronic circuits, the contact resistance (the part of a material's total resistance due to imperfect contact at the interface) is not affected by moisture.

"This will make life easier for sensor designers, since they won't have to worry about humidity influencing the contacts, just the influence on the graphene itself," explains Arne Quellmalz, a PhD student at KTH Royal Institute of Technology (Sweden) and the main researcher of the research.

The study, published in the journal ACS Applied Materials & Interfaces, has been carried out experimentally using graphene together with gold metallization and silica substrates in transmission line model test structures, as well as computer simulations.

"By combining graphene with conventional electronics, you can take advantage of both the unique properties of graphene and the low cost of conventional integrated circuits." says Quellmalz, "One way of combining these two technologies is to place the graphene on top of finished electronics, rather than depositing the metal on top the graphene sheet."

As part of the European CO2-DETECT project, the authors are applying this new approach to create the first prototypes of graphene-based sensors. More specifically, the purpose is to measure carbon dioxide (CO2), the main greenhouse gas, by means of optical detection of mid-infrared light and at lower costs than with other technologies.

In addition to the KTH Royal Institute of Technology, the companies SenseAir AB from Sweden and Amo GmbH from Germany are likewise participants in the CO2-DETECT project, as is the Catalan Institute of Nanotechnology (ICN) from Barcelona.
References: Arne Quellmalz et al. "Influence of Humidity on Contact Resistance in Graphene Devices". ACS Appl. Mater. Interfaces, Nov. 2018. https://doi.org/10.1021/acsami.8b10033

FECYT - Spanish Foundation for Science and Technology

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.