Nav: Home

How does a quantum particle see the world?

January 30, 2019

According to one of the most fundamental principles in physics, an observer on a moving train uses the same laws to describe a ball on the platform as an observer standing on the platform - physical laws are independent on the choice of a reference frame. Reference frames such as the train and the platform are physical systems and ultimately follow quantum-mechanical rules. They can be, for example, in a quantum state of superposition of different positions at once. So, what would the description of the ball look like for an observer on such a "quantum platform"? Researchers at the University of Vienna and the Austrian Academy of Sciences proved that whether an object (in our example, the ball) shows quantum features depends on the reference frame. The physical laws, however, are still independent of it. The results are published in Nature Communications.

Physical systems are always described relative to a reference frame. For example, a ball bouncing on a railway platform can be observed either from the platform itself or from a passing train. A fundamental principle of physics, the principle of General Covariance, states that the laws of physics which describe the motion of the ball do not depend on the reference frame of the observer. This principle has been crucial in the description of motion since Galileo and central to the development of Einstein's theory of relativity. It entails information about symmetries of the laws of physics as seen from different reference frames.

Reference frames are physical systems, which ultimately follow quantum-mechanical rules. A group of researchers led by ?aslav Brukner at the University of Vienna and the Institute for Quantum Optics and Quantum Information (IQOQI-Vienna) of the Austrian Academy of Sciences have asked themselves whether it is possible to formulate the laws of physics from the point of view of an observer "attached" to a quantum particle and to introduce a quantum reference frame. They were able to demonstrate that one can consider any quantum system as a quantum reference frame. In particular when an observer on the train sees the platform in a superposition of different positions at once, an observer on the platform sees the train in a superposition. As a consequence, it depends on the reference frame of the observer whether an object such as the ball exhibits quantum or classical properties.

The researchers showed that the Principle of Covariance is extended to such quantum reference frames. This means that the laws of physics retain their form independent of the choice of the quantum reference frame. "Our results suggest that the symmetries of the world have to be extended at a more fundamental level," says Flaminia Giacomini, the lead author of the paper. This insight might play a role at the interplay of quantum mechanics and gravity -a regime that is mostly still unexplored- as in that regime it is expected that the classical notion of reference frames will not be sufficient and that reference frames will have to be fundamentally quantum.
Publication in Nature Communications

"Quantum mechanics and the covariance of physical laws in quantum reference frames", F. Giacomini, E. Castro-Ruiz, and ?. Brukner; Nature Communications (2019)

University of Vienna

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...