Measuring stress around cells

January 30, 2019

Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to "sculpt" biological structures. Thanks to a new tool developed at McGill University, scientists will now be able to watch, and map these forces.

Christopher Moraes, an assistant professor in McGill's Department of Chemical Engineering, and colleagues developed spherical spring-like sensors that distort under mechanical stress within three-dimensional tissues in the lab. The sensors are close to the size of individual cells that make up the tissue. Using imaging techniques and computational methods, the researchers were able to calculate cell-generated forces that cause deformation of the spheres,.

As a first application, the "Microspherical Stress Gauges" were used to study cells that aggregate together to form a 3D cell culture. Prof. Moraes' team observed the spontaneous formation of a tensional 'skin' around this mass of cells, which keep the tissue intact and under mechanical compression. The findings were reported recently in Nature Communications.

"Intuitively, it makes sense that some forces must act to compact the spheroids: any change in shape requires a force to make that happen. However, realizing that relatively small levels of tension in the 'skin' are sufficient to balance large compressive loads within the tissue was quite surprising, and demonstrated how coordinated activity of relatively weak cells can give rise to large effects", says Prof. Moraes, who is also the Canada Research Chair in Advanced Cellular Microenvironments.

Being able to visualize forces within biological cultures offers insight into the complex interplay between cells and environmental mechanics, he adds.

"The ability to measure localized forces within multicellular tissues is vital to understand developmental processes and may be of practical utility in developing novel tissue-engineering strategies," Moraes adds.
-end-
This work was funded by the Canadian Cancer Society, the Natural Sciences and Engineering Research Council of Canada and the National Institutes of Health.

"Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures" by Wontae Lee et al. was published online on January 11 in Nature Communications.

McGill University

Related Sensors Articles from Brightsurf:

OPD optical sensors that reproduce any color
POSTECH Professor Dae Sung Chung's team uses chemical doping to freely control the colors of organic photodiodes.

Airdropping sensors from moths
University of Washington researchers have created a sensor system that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination.

How to bounce back from stretched out stretchable sensors
Elastic can stretch too far and that could be problematic in wearable sensors.

New mathematical tool can select the best sensors for the job
In the 2019 Boeing 737 Max crash, the recovered black box from the aftermath hinted that a failed pressure sensor may have caused the ill-fated aircraft to nose dive.

Lighting the way to porous electronics and sensors
Researchers from Osaka University have created porous titanium dioxide ceramic thin films, at high temperatures and room temperature.

Russian scientists to improve the battery for sensors
Researchers of Peter the Great St. Petersburg Polytechnic University (SPbPU) approached the creation of a solid-state thin-film battery for miniature devices and sensors.

Having an eye for colors: Printable light sensors
Cameras, light barriers, and movement sensors have one thing in common: they work with light sensors that are already found in many applications.

Improving adhesives for wearable sensors
By conveniently and painlessly collecting data, wearable sensors create many new possibilities for keeping tabs on the body.

Kirigami inspires new method for wearable sensors
As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body's natural movement becomes ever more crucial.

Wearable sensors detect what's in your sweat
A team of scientists at the University of California, Berkeley, is developing wearable skin sensors that can detect what's in your sweat.

Read More: Sensors News and Sensors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.