The 'Batman' in hydrogen fuel cells

January 30, 2019

In a study published in Nature on January 31st, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.

Hydrogen is considered one of the most promising clean energy sources of the future. Hydrogen fuel cell vehicles use hydrogen as fuel, which has high energy conversion efficiency, and zero emissions. But the development of hydrogen fuel cells faces many challenges, including the issue of carbon-monoxide (CO) poisoning of the fuel cell electrodes. Currently, hydrogen is mainly derived from such processes as steam reforming of hydrocarbons, such as methanol and natural gas, and water gas shift reaction. The resulting hydrogen usually contains 0.5% to 2% of trace CO. As the "heart" of hydrogen fuel cell vehicles, fuel cell electrodes are easily "poisoned" by CO impurity gas, resulting in reduced battery performance and shortened life, which severely hampers the application fuel cells in vehicles.

Earlier research has identified a method, called preferential oxidation in CO in Hydrogen (PROX), as a promising way to on-board remove trace amounts of CO from hydrogen by using catalysts. However, existing PROX catalysts can only work in high temperatures (above room temperature) and within a narrow temperature range, making it impractical for civil applications, such as fuel cell vehicles, that must be reliable even in winter months (Fig. 1).

Now, a USTC team led by Junling Lu, professor at the Hefei National Laboratory for Physical Sciences at the Microscale, has designed a new structure of atomically dispersed iron hydroxide on platinum nanoparticles (Fig. 2) to efficiently purify hydrogen fuel over a broad temperature range of 198 -380 Kelvin, which is approximately -103oF-224oF or -75oC-107oC. They also found that the material provided a thorough protection of fuel cells against CO poisoning during both frequent cold-starts and continuous operations in extremely cold temperatures.

"These findings might greatly accelerate the arrival of the hydrogen fuel cell vehicle era," said Prof. Lu.

"Our ultimate goal is to develop a cost-effective catalyst with high activity and selectivity that provides continuous on-board fuel cell protection and one that enables complete and 100% selective CO removal in a fuel cell that can be used for broader purposes," Prof. Lu adds.

One referee of the article commented: "When comparing with other catalyst systems reported in the literature, this reverse single-atom catalyst appears the best in terms of activity, selectivity, and stability in CO2-containing streams."

University of Science and Technology of China

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to