Nav: Home

A first: Cornell researchers quantify photocurrent loss in particle interface

January 30, 2019

ITHACA, N.Y.- With a growing global population will come increased energy consumption, and sustainable forms of energy sources such as solar fuels and solar electricity will be in even greater demand. And as these forms of power proliferate, the focus will shift to improved efficiency.

Photoelectrodes and photovoltaics such as solar panels often feature thin films of silicon or other nanostructured semiconductor material, and these structures include nanoparticles through which the current generated by sunlight must pass. While the nanoparticle composition offers many benefits, including large surface-to-volume ratios, it has one significant drawback.

Electrical current passing from one particle to another experiences a power loss; if the current passes through enough of these particle-particle interfaces, the total loss could render the device useless. But no one has been able to determine just how much power is lost as the current goes from one nanoparticle to another - until now.

A group led by Peng Chen, the Peter J.W. Debye Professor in the Department of Chemistry and Chemical Biology at Cornell, has determined that photocurrent loses approximately 20 percent of its power as it passes through the interface. Thus, the group stated, current that passes through 11 such interfaces would be reduced to just 10 percent of its original power.

"We believe this will provide a benchmark for people using nanomaterials to design these types of devices," said Chen, senior author of "Quantifying Photocurrent Loss of a Single Particle-Particle Interface in Nanostructured Photoelectrodes."

The report was published Jan. 7 in Nano Letters, a publication of the American Chemical Society. Other authors included former postdoctoral associates Mahdi Hesari and Justin Sambur, current postdoc Xianwen Mao and Won Jung, Ph.D. '18, all from the Chen Group.

To perform this experimental calculation, Peng and his group used a microfluidic cell, with three electrodes in an aqueous electrolyte solution. One of the electrodes was made of strips of indium tin oxide (ITO); on or near it were placed nanorods of titanium oxide, whose photoelectrochemical properties the group had already examined.

The group experimented with several different particle configurations, and focused a laser beam on a spot either just after (Type-A spots) or just before (Type-B spots) the interface where two nanorods touched each other. The laser hitting the Type-B spots sent the photoelectric charge through the particle-particle interface.

Taking dozens of measurements of both types of photoelectrochemical behaviors, the group observed power losses averaging around 20 percent.

Although Chen and his group have now come up with a solid figure for calculating power loss in nanomaterials, they still don't have a handle on why this happens. They've ruled out factors that rely on the strength of the current.

"We still don't understand the underlying molecular mechanism that leads to this 20 percent loss," he said. "This is something we plan to pursue in the future, and it will require us to essentially actively manipulate the interface, manipulate the chemical nature of the interface, and reperform our measurements."
This work was supported by grants from the U.S. Department of Energy's Office of Science-Basic Energy Sciences and the U.S. Army Research Office. The research made use of the Cornell Center for Materials Research, which is supported by the National Science Foundation.

Cornell University

Related Nanoparticle Articles:

Modeling a model nanoparticle
New research from the University of Pittsburgh Swanson School of Engineering introduces the first universal adsorption model that accounts for detailed nanoparticle structural characteristics, metal composition and different adsorbates, making it possible to not only predict adsorption behavior on any metal nanoparticles but screen their stability, as well.
Nanoparticle therapy targets lymph node metastases
Metastasis, in which cancer cells break free from the primary tumor and form tumors at other sites, worsens the prognosis for many cancer patients.
Nanoparticle computing takes a giant step forward
Inspired by how cellular membranes process biological information, we developed a platform for constructing nanoparticle circuits on a supported lipid bilayer.
Nanoparticle breakthrough in the fight against cancer
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a novel targeted drug delivery system in the fight against cancer.
Ultra-sensitive sensor with gold nanoparticle array
Scientists from the University of Bath (UK) and Northwestern University (USA) have developed a new type of sensor platform using a gold nanoparticle array, which is 100 times more sensitive than current similar sensors.
More Nanoparticle News and Nanoparticle Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...