Nav: Home

Double trouble: A drug for alcoholism can also treat cancer by targeting macrophages

January 30, 2020

Developing a therapy to combat cancer remains one of the most difficult challenges in medical research. Cancer owes its notorious identity to the fact that the cancer cells use the host's own immune system to grow and spread, ultimately becoming deadly. Immune cells like macrophages, which ordinarily fight to protect normal cells, are hijacked by malignant cancer cells, and populate the environment around the tumors, becoming tumor-associated macrophages (TAMs). In fact, it was found that the cancerous tissue of patients for whom immunotherapy was not successful was indeed rich in macrophages, confirming the link between the cancer and the TAMs. It is these TAMs that produce signaling proteins like chemokines and trigger the inhibitory immune checkpoint releases that create an immunosuppressive tumor environment, which protects the cancer cells and allows their accelerated growth. Since it is the TAMs that facilitate the spreading of cancer cells, regulating them as a therapeutic strategy for combating cancer has gained attention in recent years.

A research group led by Yuya Terashima from the Tokyo University of Science saw this as an opportunity to explore the realm of developing novel anti-cancer drugs. Their seminal work in Nature Immunology 2005 reported the discovery of a new target protein called FROUNT, which is linked to regulation and movement of the TAMs. Since FROUNT amplified "chemokine signaling," a type of cellular communication, an integral process for TAM accumulation and activity, it was therefore linked directly to TAM regulation.

The team decided to expand on these findings, in order to investigate whether a therapeutic strategy can be formulated and have published their findings in Nature Communications. Through animal experiments, the researchers found that by regulating FROUNT expression in TAMs, cancer growth could be suppressed.

Then, in order to reduce any side effects, the team also developed an independent strategy of limiting the effect of FROUNT on chemokine signaling by inhibiting the interaction between the two. The team screened 131,200 compounds and zeroed in on disulfiram, a drug used to treat alcoholism, and known for its potential as an anti-cancer drug. This drug was found to directly bind to the FROUNT site, making FROUNT unavailable for interaction with the components of chemokine signaling. Reflecting on the results, Terashima explains, "When tested on mice, disulfiram inhibited the movement of macrophages and suppressed the growth of cancer cells. Therefore, our findings present a new cancer treatment strategy that can suppress the growth of cancer cells that are difficult to respond to by immune checkpoints when used in combination with disulfiram."

The team is now further pushing the boundary of the finding and has started clinical research at the National Cancer Center Hospital East. Illustrating the outline for further research, Terashima comments, "since macrophages pose as a problem in various types of diseases, the indications for FROUNT inhibitors for a wide range of diseases may be considered." Indeed, the team expects this this to be the first therapeutic strategy to regulate TAMS, and are hopeful that a better understanding of the correlation between the inhibition of the target protein FROUNT and TAMs paint a promising picture for the future of novel therapeutic strategies.
-end-
About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Dr. Terashima from Tokyo University of Science

Dr. Yuya Terashima is a junior associate professor at the Department of Biological Sciences, Tokyo University of Science. He discovered a chemokine signal regulator FROUNT which directly binds to the receptor, and has been studying for the family of the chemokine-receptor associating molecule, aiming for therapeutic applications of their functional inhibitors. He works with his team to understand the molecular mechanisms of living organisms with a specific perspective on inflammation and immunology, and drug discovery.

Funding information

This study was supported in part by Practical Research for Innovative Center Control (JP19ck0106422) and Project for Cancer Research and Therapeutic Evolution (P-CREATE, JP19cm0106204) from the Japan Agency for Medical Research and Development (AMED) and JSPS KEKENHI.

Tokyo University of Science

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.