Nav: Home

New target identified for repairing the heart after heart attack

January 30, 2020

Billions of cardiac muscle cells are lost during a heart attack. The human heart cannot replenish these lost cells, so the default mechanism of repair is to form a cardiac scar. While this scar works well initially to avoid ventricular rupture, the scar is permanent, so it will eventually lead to heart failure and the heart will not be able to pump as efficiently as before the damage caused by heart attack.

Zebrafish, a freshwater fish native to South Asia, is known to be able to fully regenerate its heart after damage due to the formation of a temporary scar as new cardiac muscle cells are formed. Professor Paul Riley and his team at the University of Oxford have been striving to understand and compare the composition of the cardiac scar in different animals as part of ongoing efforts to investigate whether it can be modulated to become a more transient scar like that of the zebrafish, and therefore potentially avoid heart failure in heart attack patients.

To do so, the researchers used three different models of studying heart repair and regeneration; the adult mouse heart, which behaves in a similar way to the human heart, the neonate mouse heart, which can regenerate up to 7 days after being born before losing that ability as the mouse ages, and the zebrafish which can regenerate the heart up to adulthood through forming a transient scar.

Professor Paul Riley said: "Efforts to treat heart attack with cell replacement strategies to-date have largely failed with disappointing clinical trial results. One reason for this is the local environment into which the new cells emerge: a cytotoxic mixture of inflammation and fibrosis which prevents their engraftment and integration with survived heart tissue. Consequently there is an urgent unmet clinical need to condition the local injury environment for efficient replacement of lost tissue. Major targets for this are the immune cells which invade the heart after injury causing inflammation, and the process of scar formation itself (fibrosis) during which immune cells signal to myofibroblasts to deposit collagen."

The team focused their efforts on studying the behaviour of macrophages, cells normally associated with inflammation and fighting infection in the body, when exposed to the three post-injury environments. They extracted macrophages from each model to examine their gene expression. In both mouse and fish macrophages, they found that they were showing signs of being directly involved in the creation of the molecules that form part of the cardiac scar, and particularly collagen, which is the main protein involved.

BHF CRE Intermediate Transition Research Fellow and Lead Researcher Dr Filipa Simões said "This information is important and quite striking because up to today, only cardiac myofibroblasts have been implicated in directly forming a scar in the heart."

"To further investigate whether macrophages were in fact directly contributing to the scar, we transplanted these macrophages into both fish and mouse hearts that had been previously injured, where collagens have been tagged with Green Fluorescent Protein (GFP) as a way of tracking gene expression. We looked 3 weeks later, the time point where the scar has been deposited, and we were very surprised to see that part of the scar formed was green in its composition, which really showed that macrophages can upregulate collagens, export them to the extracellular matrix and deposit into the scar."

"We have identified a new evolutionarily conserved role for macrophages that is really challenging the current dogma that myofibroblasts are the sole cells contributing to the cardiac scar, that we believe could also be applied to the human heart."

"To effectively repair the heart, broadly speaking you need two things: one, you need to modulate the permanent scar into a transient scar and two, you need to replenish all the heart muscle cells and blood vessels that have been lost through injury. Our study helps to address the first part of the problem as we identified macrophages as a new player in depositing the scar. However, before we are able to move to clinical trials and help heart attack patients, we need to carry out more fundamental basic research to try and deeply understand the mechanism by which macrophages can contribute to the scar."

The study is funded by the British Heart Foundation (BHF). Professor Jeremy Pearson, Associate Medical Director at the BHF, said: "Our hearts struggle to repair themselves following the damage caused from a heart attack. This can lead to heart failure, an incurable condition with worse survival rates than many cancers. We urgently need to find ways to repair the heart when it's damaged.

"Macrophages are an important part of our immune system, removing dead and dying cells and helping to repair damaged tissue. By showing that macrophages produce collagen, a key part of scar tissue, this research could lead to new ways to enhance repair after a heart attack."
-end-


University of Oxford

Related Heart Failure Articles:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication
Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.
Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.
Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population
Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.
Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.
Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.
Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.
How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.
Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.
More Heart Failure News and Heart Failure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.