Nav: Home

Coral genes go with the flow further than expected

January 30, 2020

The southern Red Sea is more readily connected with the Indian Ocean than with the northern Red Sea, according to simulations carried out at KAUST. This helps explain genetic patterns seen in the Red Sea and highlights the need for a collaborative regional approach to marine conservation.

The Red Sea is home to one of the longest coral reef systems on the planet and a wide diversity of marine life. Previous studies have identified a clear genetic break in the Red Sea between northern and southern parts of the sea. While this could be partially explained by the north-south environmental gradient in the Red Sea, the contribution of physical connectivity within the Red Sea remained unclear.

An international team led by KAUST researchers used particle tracking simulations to investigate the physical connectivity within the Red Sea and with nearby regions. They simulated the release of millions of particles in the southern Red Sea using a circulation-based particle tracking model to trace the movement of the particles back in time to figure out where they had come from.

The simulations showed that the southern Red Sea is more connected with regions in the Indian Ocean than with the northern Red Sea. Influx through the Bab-El-Mandeb strait is a major transport stream into the southern Red Sea, connecting it strongly with the Gulf of Aden. "By revealing the dynamic linkages between the southern Red Sea and the Indian Ocean, our research provides a possible explanation for the genetic separation in the Red Sea from a physical connectivity perspective," says Ph.D. student Yixin Wang, first author of the study.

The connectivity pattern proved to be seasonal, with stronger links during the winter and a weaker connection in the summer. "This could affect the genetic distribution of different species because species that spawn in the winter in the Gulf of Aden would have a stronger genetic connection with the southern Red Sea than those that spawn in summer," says Ibrahim Hoteit, who led the study.

The simulations also showed links between the southern Red Sea with more distant regions, such as the coast of Somalia, Oman and Socotra, and even as far as Kenya, Tanzania and Madagascar. "We expected to see some connections with these remote areas, but our results revealed stronger (for example, Somalia) and further (for example, Madagascar) connections than we expected," says Wang. "Marine conservation should be conducted under a co-operative framework between the countries involved, and ocean management units should transcend jurisdictional boundaries."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.