New study identifies Neanderthal ancestry in African populations and describes its origin

January 30, 2020

When the first Neanderthal genome was sequenced, using DNA collected from ancient bones, it was accompanied by the discovery that modern humans in Asia, Europe and America inherited approximately 2% of their DNA from Neanderthals -- proving humans and Neanderthals had interbred after humans left Africa. Since that study, new methods have continued to catalogue Neanderthal ancestry in non-African populations, seeking to better understand human history and the effects of Neanderthal DNA on human health and disease. A comparable catalogue of Neanderthal ancestry in African populations, however, has remained an acknowledged blind spot for the field due to technical constraints and the assumption that Neanderthals and ancestral African populations were geographically isolated from each other.

In a paper published today in the journal Cell, a team of Princeton researchers detailed a new computational method for detecting Neanderthal ancestry in the human genome. Their method, called IBDmix, enabled them for the first time to search for Neanderthal ancestry in African populations as well as non-African ones. The project was led by Joshua Akey, a professor in Princeton's Lewis-Sigler Institute for Integrative Genomics (LSI).

"This is the first time we can detect the actual signal of Neanderthal ancestry in Africans," said co-first author Lu Chen, a postdoctoral research associate in LSI. "And it surprisingly showed a higher level than we previously thought," she said.

The method the Princeton researchers developed, IBDmix, draws its name from the genetic principle "identity by descent" (IBD), in which a section of DNA in two individuals is identical because those individuals once shared a common ancestor. The length of the IBD segment depends on how long ago those individuals shared a common ancestor. For example, siblings share long IBD segments because their shared ancestor (a parent) is only one generation removed. Alternatively, fourth cousins share shorter IBD segments because their shared ancestor (a third-great grandparent) is several generations removed.

The Princeton team leveraged the principle of IBD to identify Neanderthal DNA in the human genome by distinguishing sequences that look similar to Neanderthals because we once shared a common ancestor in the very distant past (~500,000 years ago), from those that look similar because we interbred in the more recent present (~50,000 years ago). Previous methods relied on "reference populations" to aid the distinction of shared ancestry from recent interbreeding, usually African populations believed to carry little or no Neanderthal DNA. However, this reliance could bias estimates of Neanderthal ancestry depending on which reference population was used. The Princeton researchers termed IBDmix a "reference free method" because it does not use an African reference population. Instead, IBDmix uses characteristics of the Neanderthal sequence itself, like the frequency of mutations or the length of the IBD segments, to distinguish shared ancestry from recent interbreeding. The researchers were therefore able to identify Neanderthal ancestry in Africans for the first time and make new estimates of Neanderthal ancestry in non-Africans, which showed Europeans and Asians to have more equal levels than previously described.

Kelley Harris, a population geneticist at the University of Washington who was not involved in the study, noted that the new estimates of Neanderthal ancestry using IBDmix highlight the technical problem in methods reliant on reference panels. "We might have to go back and revisit a bunch of results from the published literature and evaluate whether the same technical issue has been throwing off our understanding of gene flow in other species," she said.

In addition to identifying Neanderthal ancestry in African populations, the researchers described two revelations about the origin of the Neanderthal sequences. First, they determined that the Neanderthal ancestry in Africans was not due to an independent interbreeding event between Neanderthals and African populations. Based on features of the data, the research team concluded that migrations from ancient Europeans back into Africa introduced Neanderthal ancestry into African populations.

Second, by comparing data from simulations of human history to data from real people, the researchers determined that some of the detected Neanderthal ancestry in Africans was actually due to human DNA introduced into the Neanderthal genome. The authors emphasized that this human-to-Neanderthal gene flow involved an early dispersing group of humans out of Africa, occurring at least 100,000 years ago -- before the Out-of-Africa migration responsible for modern human colonization of Europe and Asia and before the interbreeding event that introduced Neanderthal DNA into modern humans. The finding reaffirmed that hybridization between humans and closely related species was a recurrent part of our evolutionary history.

While the Princeton researchers acknowledged the limited number of African populations they were able to analyze, they hope their new method and their findings will encourage more study of Neanderthal ancestry across Africa and other populations. Regarding the overall significance of the research, Chen said: "This demonstrates the remnants of Neanderthal genomes survive in every modern human population studied to date."
-end-
"Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals," by Lu Chen, Aaron B. Wolf, Wenqing Fu, Liming Li and Joshua M. Akey, appears in the Feb. 20 issue of Cell, with an advance online publication on Jan. 30 (Chen et al., 2020, Cell 180, 1-11, DOI: 10.1016/j.cell.2020.01.012). The research was supported by the National Institutes of Health's National Institute of General Medical Sciences (R01 GM110068).

Princeton University

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.