Nav: Home

A quantum of solid

January 30, 2020

It is well known that quantum properties of individual atoms can be controlled and manipulated by laser light. Even large clouds of hundreds of millions of atoms can be pushed into the quantum regime, giving rise to macroscopic quantum states of matter such as quantum gases or Bose-Einstein condensates, which nowadays are also widely used in quantum technologies. An exciting next step is to extend this level of quantum control to solid state objects. In contrast to atomic clouds, the density of a solid is a billion times higher and all atoms are bound to move together along the object's center of mass. In that way, new macroscopic quantum states involving large masses should become possible.

However, entering this new regime is not at all a straightforward endeavour. A first step for achieving such quantum control is to isolate the object under investigation from influences of the environment and to remove all thermal energy - by cooling it down to temperatures very close to absolute zero (-273.15 °C) such that quantum mechanics dominates the particle's motion. To show this the researchers chose to experiment with a glass bead approximately a thousand times smaller than a typical grain of sand and containing a few hundred million atoms. Isolation from the environment is achieved by optically trapping the particle in a tightly focused laser beam in high vacuum, a trick that was originally introduced by Nobel laureate Arthur Ashkin many decades ago and that is also used for isolating atoms. "The real challenge is for us to cool the particle motion into its quantum ground state. Laser cooling via atomic transitions is well established and a natural choice for atoms, but it does not work for solids", says lead-author Uros Delic from the University of Vienna.

For this reason, the team has been working on implementing a laser-cooling method that was proposed by Austrian physicist Helmut Ritsch at the University of Innsbruck and, independently, by study co-author Vladan Vuletic and Nobel laureate Steven Chu. They had recently announced a first demonstration of the working principle, "cavity cooling by coherent scattering", however they were still limited to operating far away from the quantum regime. "We have upgraded our experiment and are now able not only to remove more background gas but also to send in more photons for cooling", says Delic. In that way, the motion of the glass bead can be cooled straight into the quantum regime. "It is funny to think about this: the surface of our glass bead is extremely hot, around 300°C, because the laser heats up the electrons in the material. But the motion of the center of mass of the particle is ultra-cold, around 0.00001°C away from absolute zero, and we can show that the hot particle moves in a quantum way."

The researchers are excited about the prospects of their work. The quantum motion of solids has also been investigated by other groups all around the world, along with the Vienna team. Thus far, experimental systems were comprised of nano- and micromechanical resonators, in essence drums or diving boards that are clamped to a rigid support structure. "Optical levitation brings in much more freedom: by changing the optical trap - or even switching it off - we can manipulate the nanoparticle motion in completely new ways", says Nikolai Kiesel, co-author and Assistant Professor at the University of Vienna. Several schemes along these lines have been proposed, amongst others by Austrian-based physicists Oriol Romero-Isart and Peter Zoller at Innsbruck, and may now become possible. For example, in combination with the newly achieved motional ground state the authors expect that this opens new opportunities for unprecedented sensing performance, the study of fundamental processes of heat engines in the quantum regime, as well as the study of quantum phenomena involving large masses. "A decade ago we started this experiment motivated by the prospect of a new category of quantum experiments. We finally have opened the door to this regime."
Publication in Science: Deli?, U, Reisenbauer, M, Dare, K, Grass, D, Vuleti?, V, Kiesel, N & Aspelmeyer, M; "Cooling of a Levitated Nanoparticle to the Motional Quantum Ground Stat" DOI: 10.1126/science.aba3993

University of Vienna

Related Quantum Articles:

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
A quantum of solid
Researchers in Austria use lasers to levitate and cool a glass nanoparticle into the quantum regime.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
Quantum physics: On the way to quantum networks
Physicists at Ludwig-Maximilians-Universitaet (LMU) in Munich, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km -- thus setting a new record.
How we learn is a quantum-like manner!
It brings people new perspectives on understanding how human brains run.
How sensitive can a quantum detector be?
Measuring the energy of quantum states requires detecting energy changes so exceptionally small they are hard to pick out from background fluctuations, like using only a thermometer to try and work out if someone has blown out a candle in the room you're in.
Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
More Quantum News and Quantum Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at