Study provides first look at sperm microbiome using RNA sequencing

January 30, 2020

DETROIT - A new collaborative study published by a research team from the Wayne State University School of Medicine, the CReATe Fertility Centre and the University of Massachusetts Amherst provides the first in-depth look at the microbiome of human sperm utilizing RNA sequencing with sufficient sensitivity to identify contamination and pathogenic bacterial colonization.

"We show that non-targeted sequencing of human sperm RNA has the potential to provide a profile of micro-organisms (bacteria, viruses, archaea)," said Stephen Krawetz, Ph.D., associate director of the C.S. Mott Center for Human Growth and Development at WSU and the Charlotte B. Failing Professor of Fetal Therapy and Diagnosis in the Department of Obstetrics and Gynecology, and the Center for Molecular Medicine and Genetics. "This information was recovered from the data typically cast aside as part of routine nucleic acid sequencing. The enhanced sensitivity and specificity of the sequencing technology as compared to current approaches may prove useful as a diagnostic tool for microbial status as part of the routine assessment as we move toward personalized care."

The study, "What human sperm RNA-Seq tells us about the microbiome" published in the Journal of Assisted Reproduction and Genetics, sought to determine if human sperm RNA sequencing data could provide a sensitive method of detection of micro-organisms, including bacteria, viruses and archaea compared to current methods of targeted culturing. The researchers collected 85 semen samples, isolated the sperm RNA and subjected it to RNA sequencing.

Grace Swanson, Ph.D., a postdoctoral fellow working with Dr. Krawetz, discovered a sample with an abnormally high level of microbial sequences. After taking a closer look, the sample was found to contain a considerable amount of Streptococcus agalactiae bacteria. A leading cause of neonatal infection during pregnancy and post-delivery linked to significant mortality rates in premature births, this bacteria can also be life-threatening in adults, particularly the elderly.

The current method for testing the male reproductive tract microbiome relies on culturing samples. This, the study reported, can be limiting because the majority of pathogens cannot be cultured. The costs of RNA sequencing have dropped dramatically and continue to decrease, providing a more complete picture of the human biome.

"Given the recent increase and severity of Streptococcus (agalactiae) infection, as well as others in adults, neonates and newborns, non-targeted human sperm RNA sequencing data may, in addition to providing fertility status, prove useful as a diagnostic for microbial status," Dr. Krawetz said.
Collaborators in the research in addition to Dr. Swanson include Robert Goodrich, B.S., of the WSU Department of Obstetrics and Gynecology, and Center for Molecular Medicine and Genetics; Sergey Moskovtsev, M.D., and Clifford Librach, M.D., of the CReATe Fertility Centre Research Program, Toronto, Canada; and J. Richard Pilsner, M.P.H., Ph.D., of the Department of Environmental Health Sciences at the University of Massachusetts Amherst School of Public Health and Health Sciences.

Funding for the study included the Grant for Fertility Innovation (25RJY1) from Merck KGaA Darmstadt, Germany; and from the National Institute of Environmental Health Sciences (R01-ES028298).

About Wayne State University

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit

Wayne State University - Office of the Vice President for Research

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to