New insight into regulation of blood stem cells

January 31, 2005

Scientists have made a significant advance toward understanding the regulation of blood stem cells and the complex, lifelong process of blood cell formation. A research study published in the February issue of Developmental Cell expands on previous studies by using adult animals to examine the role of a key gene known to be required for blood cell formation. Information gained from this research will be useful for future studies aimed at directing stem cell differentiation in a variety of potential therapeutic contexts.

Blood cell formation, known as hematopoiesis, begins with a hematopoietic stem cell (HSC), which can either "self-renew" and make more copies of itself or differentiate into either red blood cells, various types of white blood cells, or platelets. The genes that control proliferation and differentiation have been difficult to study using traditional gene disruption methods because loss of genes thought to be critical for this process often results in embryonic death, making it impossible to study the role of the gene of interest in mature animals.

Dr. Michael P. Cooke and colleagues from the Genomics Institute of the Novartis Research Foundation in San Diego found a way around this problem. The researchers used random mutagenesis and screening to find animals with hematopoiesis defects, and they used genetics to identify the causative gene. One line mapped to a mutation in the gene c-Myb, which has a known role in regulation of blood formation.

Interestingly, they found that c-Myb is not required for every step of hematopoiesis or for every type of blood cell. Instead, c-Myb is critical for very distinct steps in the formation of specific types of blood cells. Most surprisingly, the c-Myb mutants also had a dramatic increase in the total number of HSCs, suggesting that part of the normal function of c-Myb is to hold HSC multiplication in check.

These data suggest that c-Myb is a key regulator of hematopoiesis and acts at many distinct points to control HSCs. "It is remarkable that a single transcription factor controls the diverse processes of self-renewal, proliferation, and differentiation" says Dr. Cooke. "The next challenge is to understand how c-Myb controls HSC numbers and use this information to develop compounds that can regulate stem cell proliferation and differentiation. The ability to influence stem cell fate decisions would be expected to have a major impact on the field of stem cell therapy and to provide important in vitro model systems for the identification of genes and compounds that can be used to regulate the process of stem cell differentiation."
-end-
Mark L. Sandberg, Susan E. Sutton, Mathew T. Pletcher, Tim Wiltshire, Lisa M. Tarantino, John B. Hogenesch, and Michael P. Cooke: "c-Myb and p300 Regulate Hematopoietic Stem Cell Proliferation and Differentiation"

The other members of the research team include Mark L. Sandberg, Susan E. Sutton, Mathew T. Pletcher, Tim Wiltshire, Lisa M. Tarantino, John B. Hogenesch, and Michael P. Cooke of the Genomics Institute of the Novartis Research Foundation.

Publishing in Developmental Cell, Volume 8, Number 2, February 2005, pages 153-166. www.developmentalcell.com/

Cell Press

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.