A gene's fist 'kiss' sets off that affair known as puberty

January 31, 2005

PITTSBURGH, Jan. 31 - Puberty, that awkward phase when boys and girls are primed for their sexual reproductive years as men and women, appears to be triggered by the brain's own version of "It takes two to tango," whereby a signal literally gets turned on by a molecule that is produced by a gene aptly named KiSS-1.

The couple - a biochemical equivalent to Adam and Eve - makes its sudden appearance in a region of the brain called the hypothalamus just as puberty begins, according to a study published in this week's online edition of the Proceedings of the National Academy of Sciences (PNAS).

Until now, little had been known about what instigates the cascade of hormone secretions that, over time, produces puberty's tell-tale physical changes, including the development of breasts in girls and voice change in boys. As such, this research begins to answer one of the most vexing questions about human development: What causes puberty to begin? How is it that the full repertoire of reproductive hormones can exist at birth, go into hiding at about four to six months of age, then reemerge in full force some 10 to 12 years later?

"Puberty is critical to human development. And while there is a fairly good understanding of how the endocrine system regulates the hormones involved, just how and when the brain activates this process has been a great mystery. An appreciation of puberty's deep-seated neurobiological mechanisms could, for instance, help prevent precocious or delayed puberty from occurring in some children," noted the study's lead author, Tony Plant, Ph.D., a professor in the departments of cell biology and physiology and obstetrics, gynecology and reproductive sciences, as well as director of the Center for Research in Reproductive Physiology at the University of Pittsburgh School of Medicine.

The research, performed in collaboration with teams at Harvard University's Massachusetts General Hospital and the Oregon National Primate Research Center, builds on the discovery made independently by both Harvard and French researchers that a gene called GPR54 is defective in children with a rare disorder that inhibits puberty's onset. To better understand what role GPR54 plays in the initiation of puberty, as well as learn about KiSS-1, which in earlier rodent studies had been identified as a molecule that activates a signal receptor of GPR54, the researchers looked to the nonhuman primate, the only animal with a reproductive system in common with the human's.

The onset of puberty becomes official when gonadotropin-releasing hormone (GnRH) is secreted and sets off a chain reaction of chemical messages. Inside the hypothalamus, nerve cells release GnRH in a 'round-the-clock,' pulsatile fashion. With each secretion, the pituitary gland is stimulated to secrete its own messengers, lutenizing hormone (LH) and follicle-stimulating hormone (FSH), directly into the circulation. In turn, these rising levels of LH and FSH cause the testes and ovaries to produce the sex hormones testosterone and estradiol, the culprits responsible for the physical changes and emotional baggage of male and female puberty, respectively.

"We now have very good evidence that the GPR54 gene and its switch, the kisspeptin protein molecule produced by KiSS-1, are key to the initiation of puberty, when GnRH is released," Dr. Plant said. "However, it's unlikely that they act alone. Other signaling systems, some of which have probably yet to be identified in humans, help control GnRH release in primates."

Besides learning that GPR54 and KiSS-1 are expressed inside the hypothalamus of primates at the time of puberty, the researchers also found that by giving animals kisspeptin they could, essentially wake up the reproductive hormones from their childhood hibernation. Within 30 minutes of kisspeptin being administered to male monkeys, LH, one of the hormones stimulated by GnRH secretion, was no longer dormant, with levels 25-times higher than its baseline of zero.

In addition to Dr. Plant, other authors of the PNAS paper are Muhammad Shahab, Ph.D., formerly a fellow working with Dr. Plant and now with the department of biological sciences at Quaidi-i-Azam University in Islamabad, Pakistan; Claudio Mastronardi, Ph.D., and Sergio R. Ojeda, D.V.M., both from the division of neuroscience at the Oregon National Primate Research Center; and Stephanie B. Seminara, M.D., and William F. Crowley, Jr., M.D., of the reproductive endocrine unit at Harvard's Massachusetts General Hospital. Dr. Crowley was a senior author of a 2003 New England Journal of Medicine article that described the mutant GPR54 gene.
-end-
Their research was supported by the National Institute of Child Health and Human Development of the National Institutes of Health.

University of Pittsburgh Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.