Nav: Home

Reversible saliva allows frogs to hang on to next meal

January 31, 2017

A frog uses its whip-like tongue to snag its prey faster than a human can blink, hitting it with a force five times greater than gravity. How does it hang onto its meal as the food rockets back into its mouth?

A new Georgia Institute of Technology study says the tongue's stickiness is caused by a unique reversible saliva in combination with a super soft tongue. A frog's saliva is thick and sticky during prey capture, then turns thin and watery as prey is removed inside the mouth. The tongue, which was found to be as soft as brain tissue and 10 times softer than a human's tongue, stretches and stores energy much like a spring. This combination of spit and softness is so effective that it provides the tongue 50 times greater work of adhesion than synthetic polymer materials such as sticky-hand toys.

The Georgia Tech researchers filmed frogs eating crickets in super-slow motion to better understand the physics of the tongue. They also collected saliva samples and poked the tissue to measure softness.

"The tongue acts like a bungee cord once it latches onto its prey," said Alexis Noel, a Georgia Tech mechanical engineering Ph.D. student who led the study. "It deforms itself as it pulls back toward the mouth, continually storing the intense applied forces in its stretchy tissue and dissipating them in its internal damping."

This tissue damping, Noel said, is much like a car's shock absorbers. The tongue's softness also allows it to change shape during contact and immediately afterward while retracting.

The other vital component of the capturing process is the frog's versatile saliva.

"There are actually three phases," Noel said. "When the tongue first hits the insect, the saliva is almost like water and fills all the bug's crevices. Then, when the tongue snaps back, the saliva changes and becomes more viscous -- thicker than honey, actually -- gripping the insect for the ride back. The saliva turns watery again when the insect is sheared off inside the mouth."

Unlike water and honey, frog saliva can change its viscosity with shear rate, much like paint. Paint spreads easily when applied, but stays firmly on the wall once the brush is removed.

"For frogs, saliva seeps easily when it hits the insect, then thickens up during retraction," she said.

This spit switch can't be seen in the slow-mo videos. To identify the shear rate when viscosity drops, Noel collected saliva from 18 frogs and placed samples in a rheometer, a highly sensitive device for measuring properties of fluids.

David Hu, a professor in the George W. Woodruff School of Mechanical Engineering, is Noel's advisor who has also studied how mosquitos fly in the rain, how dogs shake off water and why eyelashes need to be an ideal length. He says the frog study could help engineers design reversible adhesives at high speed.

"Most adhesives that have been created are stiff, especially tape," said Hu, who is also a faculty member in the School of Biological Sciences. "Frog tongues can attach and reattach with soft, special properties that are extremely stickier than typical materials. Perhaps this technology could be used for new Band-Aids. Or it could be used to create new materials in soft manufacturing."

The Georgia Tech team worked with Mark Mandica, the leading herpetologist at the Amphibian Foundation in Atlanta. The foundation brings together top researchers in the field of amphibian biology, conservation, and applied science to address the causes of global amphibian declines. Current research estimates that 38 percent of the world's amphibian populations are in decline or already extinct.

The study, "Frogs use a viscoelastic tongue and non-Newtonian saliva to catch prey," is published in the Journal of the Royal Society Interface.
-end-
The project is partially supported by National Science Foundation (NSF) Graduate Research Fellowship (DGE-1148903) and NSF career award PHY-1255127. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.

Georgia Institute of Technology

Related Frogs Articles:

Bristol scientists see through glass frogs' translucent camouflage
Glass frogs are well known for their see-through skin but, until now, the reason for this curious feature has received no experimental attention.
Earth Day alert to save our frogs
With climate action a theme of Earth Day 2020 (April 22, 2020), a new research paper highlights the plight of some of the most at-risk amphibian species - and shortfalls in most conservation efforts.
Skulls gone wild: How and why some frogs evolved extreme heads
Beneath slick skin, some frogs sport spines, spikes and other skeletal secrets.
When frogs die off, snake diversity plummets
A new study in the journal Science, shows that the snake community become more homogenized and the number of species declined dramatically after chytrid fungus decimated frog populations in a remote forest in Panama.
World's largest frogs build their own ponds for their young
The first example of 'nest'-building in an African amphibian, the Goliath frog, has been described in a new article in the Journal of Natural History, and could explain why they have grown to be giant.
Skin bacteria could save frogs from virus
Bacteria living on the skin of frogs could save them from a deadly virus, new research suggests.
Frogs find refuge in elephant tracks
Frogs need elephants. That's what a new WCS-led study says that looked at the role of water-filled elephant tracks in providing predator-free breeding grounds and pathways connecting frog populations.
An island haven for frogs in a sea of extinctions
New Guinea is one of the only places in the world where frogs are safe from the chytrid fungus that has made more than 90 species extinct.
Fluorescence discovered in tiny Brazilian frogs
An international team of researchers led by NYU Abu Dhabi Postdoctoral Associate Sandra Goutte was studying the acoustic communications of these miniature frogs.
Bacteria may help frogs attract mates
The role played by symbiotic microorganisms isolated from the skin of anurans has been discovered by researchers in Brazil.
More Frogs News and Frogs Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.