Nav: Home

Mechanism for photosynthesis already existed in primeval microbe

January 31, 2017

A Japanese research group led by Associate Professor ASHIDA Hiroki (Graduate School of Human Development and Environment, Kobe University), Academic Researcher KONO Takunari (Graduate School of Human Development and Environment, Kobe University), and Professor MATSUMURA Hiroyoshi (Ritsumeikan University) has discovered an evolutionary model for the biological function that creates CO2 from glucose in photosynthesis. They found the mechanism in a primitive, non-photosynthesizing microbe.

Photosynthesis, creating oxygen and carbohydrates such as glucose from solar energy, water, and CO2, is indispensable for many species on this planet. However, it is unclear exactly how or when organisms evolved the ability to photosynthesize. These questions have fascinated scientists for a long time.

The research group discovered that Methanospirillum hungatei, a microbe (methanogenic archaeon) which is thought to have existed since before the development of photosynthesis, possess genes similar to those that play a role in photosynthesis. Through analysis of the enzymes synthesized by these genes and by investigating the metabolic substances within the organism, carrying out metabolome analysis to locate the trapped CO2, the team proved that Methanospirillum hungatei uses a primitive pathway that closely resembles the metabolic pathway used in photosynthesis to synthesize carbohydrates such as glucose.

By clarifying part of the primitive metabolic pathway for photosynthesis, these findings could help to reveal how the photosynthesis system formed during evolution, a mystery that scientists have so far been unable to solve. If further light can be shed on the evolution of photosynthesis, scientists could potentially utilize this information to use and improve upon photosynthetic functions in order to increase production of crops and biofuel.
-end-
This research was carried out as part of the Japan Science and Technology Agency (JST) Strategic Basic Research Programs. It was a joint project by Kobe University, Ritsumeikan University, the Nara Institute of Science and Technology, Birla Institute of Technology and Science (India), Osaka University and Shizuoka University. The findings were published on January 13 in the online journal Nature Communications.

Please click here for further details: http://www.kobe-u.ac.jp/documents/en/NEWS/research/2017_01_31_01-01.pdf

Kobe University

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...