Nav: Home

'Ghost particles' could improve understanding the universe

January 31, 2017

EAST LANSING, Mich. - Trillions of neutrinos, or ghost particles, are passing through us every second. While scientists know this fact, they don't know what role neutrinos play in the universe because they are devilishly hard to measure.

New measurements of neutrino oscillations, observed at the IceCube Neutrino Observatory at the South Pole, have shed light on outstanding questions regarding fundamental properties of neutrinos. These new measurements of neutrinos as they change from one type to another while they travel were presented at the American Physical Society Meeting in Washington. They could help fill key gaps in the Standard Model, the theory that describes the behavior of fundamental particles at every energy scale scientists have been able to measure.

"While the Standard Model is an accurate theory, it leaves gaping holes, like the nature of dark matter and how a universe filled with matter, rather than anti-matter, arose from the Big Bang. We don't know how to fill them yet," said Tyce DeYoung, MSU associate professor of physics and astronomy. "We're hoping that by measuring the properties of neutrinos, such as their masses and how they morph or oscillate from one into another, we may get some clues into these open questions."

Neutrinos are weird particles. Unlike other elementary particles that make up ordinary matter, such as electrons and quarks, neutrinos have no electric charge. They're also at least a million times lighter than any other particle known to science. In fact, their masses are so small scientists have not yet been able to measure them accurately.

With this in mind, DeYoung compares his work to a fishing trip, one in which scientists aren't quite sure of the best bait to use. "Fishing" through the ice of Antarctica, though, is yielding promising results and narrowing the search.

"As physicists, we hoped the Higgs boson would point us to the physics that lies beyond the Standard Model; unfortunately, our measurements of the Higgs haven't turned up many clues," DeYoung said. "So we hope we may find something by studying neutrinos. IceCube detects neutrinos with a wider range of energies and distances than other experiments, so we cast a wide net."

Energetic neutrinos produced by cosmic rays hitting the Earth's atmosphere can be detected at the South Pole, using the Antarctic ice as a particle detector like no other on the planet.

The IceCube data suggest that one species of neutrino may comprise exactly equal amounts of two neutrino "flavors."

"Neutrinos have a habit of changing, or oscillating, between three types, we call them 'flavors,'" said Joshua Hignight, the MSU research associate who presented the new results at the meeting. "So, if one neutrino is a precisely equal mix of two flavors, it could be a surprising coincidence or there might be a deeper reason for it coming from the physics beyond the Standard Model."

These measurements are consistent from results from other experiments using neutrinos with lower energies, but whether this flavor mixture is exactly balanced remains under debate. The IceCube physicists will continue to refine their analysis and collect more data. Future data will enable these measurements to be made more precisely, DeYoung said.

IceCube is the world's largest neutrino detector, using a billion tons of the Antarctic ice cap beneath the U.S. Amundsen-Scott South Pole Station to observe neutrinos. It's operated by a collaboration of 300 physicists from 48 universities and national laboratories in 12 countries. Construction was made possible by support from the National Science Foundation and other international funding agencies.
-end-
Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Neutrinos Articles:

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.
Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.
Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.
Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?
T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.
Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.
Radio waves detect particle showers in a block of plastic
A cheap technique could detect neutrinos in polar ice, eventually allowing researchers to expand the energy reach of IceCube without breaking the bank.
APS tip sheet: Harnessing radar echoes for future neutrino detection
New high energy neutrino detection method could lead to a neutrino telescope able to observe neutrinos with energies beyond the current observable range.
Borexino sheds light on solar neutrinos
For more than ten years, the Borexino Detector located 1,400 meters below surface of the Italian Gran Sasso massif has been exploring the interior of our Sun.
A first 'snapshot' of the complete spectrum of neutrinos emitted by the sun
About 99 percent of the sun's energy emitted as neutrinos is produced through nuclear reaction sequences initiated by proton-proton (pp) fusion in which hydrogen is converted into helium, say scientists including physicist Andrea Pocar at the University of Massachusetts Amherst.
More Neutrinos News and Neutrinos Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.