Nav: Home

Making the switch to polarization diversity

January 31, 2017

LOS ANGELES - Vast amounts of data transmit across the Internet and telecommunications networks delivering, for example, real-time video calls from one cell phone to another - across the world. As people send and receive increasing amounts of data like ultra-high definition (4K, 8K) images over these largely optical fiber-based networks, and the demand for such increases, so too does the need for new technologies to transmit that data at enhanced speeds, with increased energy efficiency, and at lower cost. A promising way to do that is by using optical switches that relay signals carried by optical fibers from one circuit to another. One new technology in particular now offers significant improvement to the optical switches used by fiber optic networks.

In work they will present at the Optical Fiber Communication Conference and Exhibition (OFC), held 19-23 March in Los Angeles, California, USA, researchers with Japan's National Institute of Advanced Industrial Science and Technology (AIST) describe the development of a new kind of an integrated optical switch, made using silicon photonics technologies in highly efficient ways.

One requirement of such optical switches is that they be able to handle light signals with both vertical and horizontal polarizations. This is because optical signals carry data with both polarizations, a technique known as polarization-division multiplexing. To achieve this dual transmission, a separate switch circuit must be used for each polarization. In doing so, this doubles the size of the chip and increases the cost of the system.

The new device, referred to technically as a "fully integrated non-duplicate polarization-diversity silicon-photonic switch," consists of a single 8 x 8 grid of 2 x 2 element switches. The researchers found that a single 8 x 8 grid with novel unique port assignments could take the place of two synchronized grids, and thus be used to simultaneously manage both polarizations of light, a method known as polarization diversity.

"In this way, the switch chip achieves polarization "insensitivity" without doubling the size and cost of the chip, which is important for broadening the practical application of such photonics integrated devices, said lead author Ken Tanizawa of AIST. "We strongly believe that a silicon-photonic switch is a key device for achieving sustainable growth of traffic bandwidth in optical networks, including both telecommunications and data communications, and eventually computer communications."

The new device also features polarization splitter-rotators integrated onto the chip. The splitter-rotators take input light signals with both horizontal and vertical polarizations, divide them into separate polarizations, and rotate one 90 degrees to match the orientation of the other. Both polarizations are synchronously switched on the single 8 x 8 grid with the unique port assignments. The switched polarizations are then recombined by the polarization splitter-rotator so that they return to their original state.

The researchers designed the device so that the distance traveled by any signal passing through the 8 x 8 grid is identical, regardless of its path. This means that the attenuation and delay of the signal are also the same, allowing for a consistently high-quality signal.

The new switch is a proof-of-concept design. The researchers are now working to further improve the device and to create a design with a larger number of ports (such as a 32 x 32 grid) that would allow for the transmission of a greater amount of data. These advances promise to not only enhance network flexibility, but also open up new possibilities for the use of optical switching in future energy-efficient optical networks.
-end-
Media Registration: A media room for credentialed press and analysts will be located on-site at the Los Angeles Convention Center, 19-23 March 2017. Media interested in attending the event should register on the OFC website media center: Media Center.

ABOUT OFC

The Optical Fiber Conference and Exposition (OFC) is the largest global conference and exhibition for optical communications and networking professionals. For more than 40 years, OFC has drawn attendees from all corners of the globe to meet and greet, teach and learn, make connections and move business forward.

OFC includes dynamic business programming, an exhibition of more than 600 companies, and high impact peer-reviewed research that, combined, showcase the trends and pulse of the entire optical networking and communications industry. OFC is managed by The Optical Society (OSA) and co-sponsored by OSA, the IEEE Communications Society (IEEE/ComSoc), and the IEEE Photonics Society. OFC 2017 will be held from 19-23 March 2017 at the Los Angeles Convention Center, California, USA. Follow @OFCConference, learn more OFC Conference LinkedIn and watch highlights OFC YouTube.

Media Contacts:

Rebecca B. Andersen
The Optical Society
+1 202.416.1443
randersen@osa.org

Joshua Miller
The Optical Society
+1 202.416.1435
jmiller@osa.orghttp://www.ofcconference.org/
http://www.aist.go.jp/index_en.html
http://www.ofcconference.org/en-us/home/news-and-press/
http://www.ofcconference.org/en-us/home/
https://twitter.com/ofcconference
https://www.linkedin.com/groups/1134727
https://www.youtube.com/user/OFCNFOEC/videos

The Optical Society

Related Polarization Articles:

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission
Rare-earth-doped nanocrystals have become sought-after materials for cellular bioprobes because of their long emission lifetimes and low cytotoxicity.
First direct exploration of magnetic fields in the upper solar atmosphere
Scientists have explored the magnetic field in upper solar atmosphere by observing the polarization of ultraviolet light with the CLASP sounding rocket experiment during its 5-minute flight in space on Sept.
Unpolarized single-photon generation with true randomness from diamond
The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond.
Model for multivalley polaritons
IBS scientists model the formation of multivalleys in semiconductor microcavities, bringing new ideas to the emerging valleytronics field.
Technique makes more efficient, independent holograms
Recently, a team of researchers encoded multiple holographic images in a metasurface that can be unlocked separately with differently polarized light.
Is personal adversity contributing to political polarization?
Unexpected life events can lead to political polarization, pushing moderates toward the spectrum's extremes, according to a new study co-authored by a University at Buffalo psychologist.
Democrats and Republicans draw different conclusions when seasons are too hot or too cold
When the weather is unseasonably hot or cold, Americans across the political spectrum have even stronger views about whether climate change caused by human activity is a reality or not.
Making the switch to polarization diversity
New silicon photonic chip that offers significant improvement to the optical switches used by fiber optic networks to be presented at OFC 2017 in Los Angeles.
Nanotechnology: Lighting up ultrathin films
Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet in Munich have developed a method for rapid and efficient characterization of these materials.
Democrat senators vote for public health policies 4 times more often than GOP
Polarization in the Senate was displayed in a recent study that found a 67-percentage- point split between Democrats and Republicans when it comes to voting for public health policies endorsed by the American Public Health Association.

Related Polarization Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...