University of Minnesota study shows wetlands provide landscape-scale reduction in nitrate pollution

January 31, 2018

MINNEAPOLIS / ST. PAUL (01/29/2018) -- A study by University of Minnesota researchers provides new insights to demonstrate that multiple wetlands or 'wetland complexes' within a watershed are extremely effective at reducing harmful nitrate in rivers and streams. These wetlands can be up to five times more efficient per unit area at reducing nitrate than the best land-based nitrogen mitigation strategies.

The research was published today in the scientific journal Nature Geoscience. The research was led by researchers from the University of Minnesota College of Science and Engineering's St. Anthony Falls Laboratory and the University's College of Biological Sciences.

In agricultural regions like the United States Midwest, excess nitrate derived from crop fertilizer makes its way to rivers and streams through subsurface drainage systems and agricultural ditches. Once in streams and rivers, high nitrate concentrations can be harmful to ecosystems and human health. This includes impacts such as drinking water contamination and the Gulf of Mexico Dead Zone. Although the topic has been the focus of extensive research, little traction has been made toward effective strategies for nitrate reduction at the landscape scale.

In this study, researchers used water samples collected over a four-year period from more than 200 waterways within the intensively managed, 17,000-square-mile Minnesota River basin, coupled with geo-spatial information about land use in the watershed. They were able to isolate the effect of wetlands on stream and river nitrate concentrations within large watersheds.

Significant research findings include: This last finding is of particular interest to the current policy debate over management and regulations that influence water quality in agricultural regions. While there is strong scientific consensus that small or temporary water bodies such as ephemeral wetlands play essential roles for improving water quality downstream, their legal status for protection under the Clean Water Act is uncertain. Court rulings expected in 2018 could have a large impact on how, and if, these water bodies are protected in years to come.

"We value what we can measure, so this is an important step forward in recognizing that as we lose wetlands, we also lose the significant benefits they provide in terms of pollution control," said Amy Hansen, research associate at the University of Minnesota St. Anthony Falls Laboratory and one of the lead authors of the study.

The contribution of small wetlands is also especially important for the future. Climate forecasts for the region predict increases in both precipitation frequency and magnitude--conditions under which this study found that wetlands play a measureable role in reducing riverine nitrate.

"Our work shows that wetland restoration could be one of the most effective methods for comprehensive improvement of water quality in the face of climate change and growing global demand for food," said study co-author Jacques Finlay, a professor in the University of Minnesota's Department of Ecology, Evolution and Behavior in the College of Biological Sciences.

The results of this research not only help to advance the science of wetlands and pollution control, but also can provide practical applications for practitioners looking to develop guidance on wetland restoration siting and potential benefits. By being able to target locations on the landscape where wetland restoration would be most effective for nitrate removal, more strategic alliances and funding may become available to make such projects happen.

"The location of the wetlands are important predictors of how effective they are at reducing nitrate," Hansen said. "Water quality programs that target these locations would be more cost effective as well."

Others agree that more wetlands could be a win-win locally and nationally.

"Agricultural productivity benefits the economy, but is often accompanied by environmental costs," said Tom Torgersen, director of the National Science Foundation (NSF)'s Water, Sustainability and Climate program that funded the research. "This study demonstrates that retaining or restoring wetlands in intensively managed agricultural watersheds would reduce nitrate in rivers and improve local water quality, while also reducing nitrate exports to the Gulf of Mexico hypoxic zone."
-end-
In addition to Hansen and Finlay, other authors of the study were Christy Dolph, University of Minnesota Department of Ecology, Evolution and Efi Foufoula-Georgiou, University of California, Irvine.

To read the full research paper entitled "Contribution of wetlands to nitrate removal at the watershed scale," visit Nature Geoscience.

University of Minnesota

Related Water Quality Articles from Brightsurf:

A watershed moment for US water quality
A new federal rule that determines how the Clean Water Act is implemented leaves millions of miles of streams and acres of wetlands unprotected based on selective interpretation of case law and a distortion of scientific evidence, researchers say in a new publication.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

New process could safeguard water quality, environment and health
Swansea University researchers have developed a new way to quickly find and remove wastewater pollutants, which can reduce their impact on the environment.

23 years of water quality data from crop-livestock systems
Researchers summarize runoff water quantity and quality data from native tallgrass prairie and crop-livestock systems in Oklahoma between 1977 and 1999.

Lessening water quality problems caused by hurricane-related flooding
June 1 is the start of hurricane season in the Atlantic, and with 2020 predicted to be particularly active, residents in coastal regions are keeping watchful eyes on the weather.

Control of anthropogenic atmospheric emissions can improve water quality in seas
A new HKU research highlighted the importance of reducing fossil fuel combustion not only to curb the trend of global warming, but also to improve the quality of China's coastal waters.

Pharma's potential impact on water quality
When people take medications, these drugs and their metabolites can be excreted and make their way to wastewater treatment plants.

Study: Your home's water quality could vary by the room -- and the season
A study has found that the water quality of a home can differ in each room and change between seasons, challenging the assumption that the water in a public water system is the same as the water that passes through a building's plumbing at any time of the year.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

How anti-sprawl policies may be harming water quality
Urban growth boundaries are created by governments in an effort to concentrate urban development -- buildings, roads and the utilities that support them -- within a defined area.

Read More: Water Quality News and Water Quality Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.