Cooking chemistry minus heat equals new non-toxic adhesive

January 31, 2019

It seems like the cakes designed on competitive cooking shows get larger and more intricate every year. From re-creating full play stages to life-size sculptures, bakers often need to have serious architectural skills. They also need to make all of the pieces stick together.

A new soy-based adhesive created in Jonathan Wilker's lab at Purdue University could solve such problems - although he's going to leave it up to someone else to figure out how it tastes, he said.

Wilker studies how marine animals, such as oysters and mussels, create natural adhesives. Unlike most glues you'd find in a hardware store, these adhesives are non-toxic, and many hold up underwater. While trying to re-create a new glue in his lab one day, Wilker noticed something strange.

"Things were sticking when they shouldn't have been," he said. "We found that the components being used, proteins and sugar, were reacting and turning into an adhesive."

This is the essence of Maillard chemistry, or "cooking chemistry," for those of us who aren't chemists. It happens when you grill a streak or bake bread in the oven; after a while, the edges start to brown and a savory smell fills the air. Chemically, sugars and proteins are combining to create aromatic compounds.

Usually, it takes heat to kick off this process, but Maillard chemistry is a whole class of messy reactions, and it can happen a few different ways. Products of each reaction get involved in their own reactions and can release chemicals that we experience as flavors. Describing the Maillard reaction in detail would take up an entire book alone, according to PBS.

"When foods brown, certain molecules are linking together. Proteins can connect to one another by reacting with sugars," Wilker said. "When sea creatures make their adhesives, they are also cross-linking proteins together. They use totally different chemistry, but the idea is somewhat similar; cross-linking proteins can create an adhesive."

This new soy-based adhesive doesn't hold up well under water, so it probably isn't a perfect replacement for the toxic glues used in plywood and chipboard (the fumes from which, when used to build houses, can be breathed in by homeowners for many years). However, it may find use in packaging of organic-certified food products.

"Food packaging usually relies on typical petroleum-based adhesives, which can leach out toxins," Wilker said.

Not only is this new adhesive made from food components, but it's even stronger than Gorilla Glue on wood. On aluminum, it's about the same. The findings were published recently in the Journal of the American Chemical Society.

To test the strength of the adhesive, Wilker's team glued two pieces of wood or aluminum together. The far ends have a hole for a pin, and a machine pulls them in opposite directions to test their strength. The new adhesive was so strong on wood that the pin ripped through the hole.

Although the soy-based adhesive was pretty strong, the team achieved even better results with a different protein, bovine serum albumin (BSA). BSA is a generic protein often used in labs for experiments. It's cheap for researchers, but not cheap enough to make a BSA-based adhesive affordable on a large commercial scale.

"If you want to break into the adhesive market, your product needs to be cheap, high-performance, and the material also has to be available on large scales," Wilker said. "This new soy-based adhesive may be able to hit these requirements while also being grown renewably."
-end-


Purdue University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.