Nav: Home

Estimation of technology level required for low-cost renewable hydrogen production

January 31, 2019

NIMS, the University of Tokyo and Hiroshima University jointly evaluated the economic efficiency of hydrogen production systems combining photovoltaic power generation and rechargeable batteries and estimated technology levels necessary for the systems to produce hydrogen at a globally competitive cost. The results obtained in this research may provide vital guidelines for pushing the intermittent renewable power generation systems as a main power source of the country.

The effort to increase renewable power generation has encountered some issues, such as unstable power generation and low annual capacity ratio. Specific examples include Japanese power companies suspending acceptance of applications from renewable energy suppliers in September 2014 and Kyushu Electric Power Company controlling output power suppression of solar power generations in October 2018. To address these issues, various organizations have been studying systems capable of storing excess electricity in rechargeable batteries and power-to-gas (P2G) systems capable of producing hydrogen using renewable electricity and storing and supplying produced hydrogen. However, most of these systems were found to be expensive to operate, undermining the effort to massively implement economically feasible power generation technology driven by domestic renewable energy.

The joint research team designed an integrated system (diagram below) capable of adjusting the amount of battery charge/discharge and the amount of electrolysis hydrogen production in relation to the amount of solar power generated. The team then evaluated the economic feasibility of the system. As a result, the team identified technology levels necessary for the system to produce hydrogen at low cost through a comprehensive analysis of various factors such as rechargeable battery and electrolyzer capacities, considering the future technological advancements. For example, rechargeable batteries that can discharge only at a low rate but can be produced economically are expected to become available by around 2030. The team estimated that integration of these batteries will enable the system operated in Japan to produce hydrogen at a globally competitive cost of 17 to 27 yen per cubic meter.

In future studies, the team plans to determine component technology levels required for proposed systems and set R&D target values to achieve these levels. The team will also investigate the system feasibility of renewable power generation systems even under output suppression control or restriction to electricity power grid connection in order to demonstrate a proto-type system of the proposed system.
-end-
This research project was carried out by a research team consisting of Michihisa Koyama (Unit Director, Technology Integration Unit, Global Research Center for Environment and Energy based on Nanomaterials Science [GREEN], NIMS), Yasunori Kikuchi (Associate Professor, Integrated Research System for Sustainability Science, University of Tokyo [Kikuchi conducted most part of this project during his affiliation with GREEN, NIMS]), Masakazu Sugiyama (Professor, Research Center for Advanced Science and Technology, the University of Tokyo) and Takayuki Ichikawa (Professor, Graduate School of Engineering, Hiroshima University). This research was in part supported by the MEXT Program for Integrated Materials Development (Director-General of GREEN: Kohei Uosaki).

Contacts

Michihisa Koyama
Unit Director
Technology Integration Unit
Global Research Center for Environment and Energy based on Nanomaterials Science [GREEN]
National Institute for Materials Science
Tel: +81-29-860-4757
Email: KOYAMA.Michihisa=nims.go.jp
(Please change "=" to "@")

Yasunori Kikuchi
Associate Professor (principal author of the published paper)
Integrated Research System for Sustainability Science, University of Tokyo
(Kikuchi was also an Invited Researcher at the Technology Integration Unit, Global Research Center for Environment and Energy based on Nanomaterials Science, NIMS, until March 2018.)
Tel: +81-3-5841-1597
E-mail: kikuchi=platinum.u-tokyo.ac.jp
(Please change "=" to "@")

Takayuki Ichikawa
Professor
Graduate School of Engineering, Hiroshima University
Tel: +81-82-424-4596
E-mail: tichi=hiroshima-u.ac.jp
(Please change "=" to "@")

Masakazu Sugiyama
Professor
Research Center for Advanced Science and Technology, University of Tokyo
Tel: +81-3-5452-5720
E-mail: sugiyama=enesys.rcast.u-tokyo.ac.jp
(Please change "=" to "@")

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: pressrelease=ml.nims.go.jp
(Please change "=" to "@")

General Affairs Section
Graduate School of Frontier Sciences, University of Tokyo
Tel: +81-4-7136-5578
Fax: +81-4-7136-4020
E-mail: sato.yumiko=mail.u-tokyo.ac.jp
(Please change "=" to "@")

Public Relations Group
Financial and General Affairs Office, Hiroshima University
1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
Tel: +81-82-424-3749
Fax: +81-82-424-6030
E-mail: koho=office.hiroshima-u.ac.jp
(Please change "=" to "@")

National Institute for Materials Science, Japan

Related Batteries Articles:

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.
Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.
New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).
New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.
Will the future's super batteries be made of seawater?
The race is on to develop even more efficient and rechargable batteries for the future.
Less may be more in next-gen batteries
Rice University engineers build full lithium-ion batteries with silicon anodes and an alumina layer to protect cathodes from degrading.
Not so fast: Some batteries can be pushed too far
Fast charge and discharge of some lithium-ion batteries with intentional defects degrades their performance and endurance, according to Rice University engineers.
Interfacial chemistry improves rechargeability of Zn batteries
Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.
Detours may make batteries better
Adding atom-scale defects to battery materials may help them charge faster, theoretical models by Rice University scientists show.
More Batteries News and Batteries Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.