Nav: Home

Researchers uncover intracellular longevity pathway

January 31, 2019

The search for clues on how to live healthier, longer lives has led researchers at Baylor College of Medicine to look inside the cells of the worm Caenorhabditis elegans. The researchers report in the journal Developmental Cell the discovery of an intracellular pathway that mediates metabolic adjustments that promote health and longevity in the worm.

"In my lab, we study the regulation of longevity using C. elegans as the animal model," said corresponding author Dr. Meng Wang, professor in the Huffington Center on Aging, of molecular and human genetics and Robert C. Fyfe Endowed Chair on Aging at Baylor College of Medicine. "In this study, we looked for answers at the cellular level, investigating how intracellular compartments of the cell work together to keep the cell healthy and living longer."

Wang and her colleagues specifically looked at two essential organelles, or compartments, of cells: the lysosomes, mostly known as the scavenger center of the cell that breaks down cellular materials and recycles them, and the mitochondria, the structures in charge of respiration producing energy for the cell.

"In our previous work we found a specific lysosomal lipid signaling pathway that promotes longevity," said Wang, who also is a member of the Dan L Duncan Comprehensive Cancer Center and an investigator in the Howard Hughes Medical Institute. "Here we found that inducing this lysosomal signaling pathway activates specific mitochondrial genes, which in turn trigger a metabolic switch from using glucose to using fat as energy source, as well as other responses."

Cells can use either sugar or lipids as fuels, and switching from the former to the latter generates a number of cellular responses that improve metabolic fitness.

"Overall, the worms become leaner because they use lipids instead of sugar and at the same time they are better protected from oxidative damages. The result is that they have extended, healthier lifespan," Wang said. "This work is the first to show how lysosomes talk to mitochondria to regulate longevity."

The researchers anticipate that other cellular organelles also communicate with each other in regulating healthy aging.

"Cellular organelles are very dynamic; they communicate with each other by physical interaction and/or by biochemical communication," Wang said. "We think that during the aging process, this communication is disrupted, leading to a halt of communication or miscommunication between the organelles, which, in turn, can lead to metabolic problems, disease and aging. If we can understand how organelles communicate, we may find ways to help them to continue their conversation in ways that help the organism live healthier, longer."
-end-
Other contributors to this work include Prasanna V. Ramachandran, Marzia Savini, Andrew K. Folick, Kuang Hu, Ruchi Masand and Brett H. Graham, who are all affiliated with Baylor College of Medicine.

This work was funded by the National Institutes of Health Office of Research Infrastructure Programs (P40 OD010440), the Howard Hughes Medical Institute, March of Dimes Foundation, Welch Foundation, NIH grants (R01AG045183, R01AT009050 and DP1DK113644) and by a predoctoral fellowship from the American Heart Association.

Baylor College of Medicine

Related Aging Articles:

Brain development and aging
The brain is a complex organ -- a network of nerve cells, or neurons, producing thought, memory, action, and feeling.
Aging gracefully in the rainforest
In an article that appears in the current issue of Evolutionary Anthropology, researchers synthesize over 15 years of theoretical and empirical findings from long-term study of the Tsimane forager-farmers.
Reversing aging now possible!
DGIST's research team identified the mechanism of reversible recovery of aging cells by inducing lysosomal activation.
Brain-aging gene discovered
Researchers at Columbia University Medical Center have discovered a common genetic variant that greatly affects normal brain aging in older adults.
Aging can be good for you (if you're a yeast)
It's a cheering thought for anyone heading towards their golden years.
How eating less can slow the aging process
New research shows why calorie restriction made mice live longer and healthier lives.
Turning back the aging clock
By boosting genes that destroy defective mitochondrial DNA, researchers can slow down and potentially reverse an important part of the aging process.
Insilico Medicine launches a deep learned biomarker of aging, Aging.AI 2.0 for testing
Insilico Medicine, Inc., a company applying latest advances in deep learning to biomarker development, drug discovery and aging research, launched Aging.AI 2.0.
Substance with the potential to postpone aging
The coenzyme NAD+ plays a main role in aging processes.
What does a healthy aging cat look like?
Just as improved diet and medical care have resulted in increased life expectancy in humans, advances in nutrition and veterinary care have increased the life span of pet cats.

Related Aging Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".