How whipworms wreak havoc on the gut

January 31, 2019

Signaling through interleukin-10 (IL-10) receptors on gut immune cells plays a critical role in protecting the gut lining and microbiota from disruption caused by whipworms, according to a study published January 31 in the open-access journal PLOS Pathogens by María Duque-Correa of the Wellcome Sanger Institute in the UK, and colleagues.

The human gut is home to millions of bacteria, collectively called the microbiota, and also to parasites such as whipworms, which cause a human disease called trichuriasis. Cells lining the gut host whipworms but also interact with gut immune cells to deploy measures that control or expel whipworms while maintaining a barrier to prevent microbial movement to organs such as the liver. Whipworms affect the composition of the microbiota, which in turn impacts the condition of the gut lining and the way in which immune cells are activated. In order to avoid tissue damage and disease, these interactions are tightly regulated. Using a mouse model, Duque-Correa and colleagues show that these interactions are regulated by signaling through a member of the IL-10 receptor family, IL-10R?, on gut immune cells.

Lack of this receptor on gut immune cells results in persistence of whipworms in the gut accompanied by uncontrolled inflammation that destroys the gut lining. This tissue damage is accompanied by the overgrowth of microbes that act as opportunistic pathogens. Moreover, the destruction of the gut barrier allows these bacteria to reach the liver, where they cause organ failure and fatal disease. Taken together, the findings emphasize the pivotal and complex role of IL-10R? signaling on immune cells in promoting microbiota homeostasis and maintaining the intestinal barrier during whipworm infections.

The authors note, "Our study reveals the master role of IL-10Ra in regulating the interactions between gut cells, the microbiota and whipworms that define the conditions for balanced parasitism. We discovered the absence of this crucial signalling pathway leads to uncontrolled inflammation that destroys the gut lining allowing microbes to invade and cause liver failure."
-end-
Research Article

Funding: MADC has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 656347(http://www.ec.europa.eu/research/mariecurieactions/). The 3i consortium was supported by Wellcome Trust grant [100156] (http://www.immunophenotype.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Duque-Correa MA, Karp NA, McCarthy C, Forman S, Goulding D, Sankaranarayanan G, et al. (2019) Exclusive dependence of IL-10Rα signalling on intestinal microbiota homeostasis and control of whipworm infection. PLoS Pathog 15(1): e1007265. https://doi.org/10.1371/journal.ppat.1007265

Author Affiliations:
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom

In your coverage please use this URL to provide access to the freely available paper: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007265

PLOS

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.