Nav: Home

Researchers identify possible new combination treatment for advanced melanoma

January 31, 2020

FINDINGS

A study by researchers at the UCLA Jonsson Comprehensive Cancer Center suggests that using an immunotherapy drug called NKTR-214, also known as bempegaldesleukin, in combination with an infusion of anti-tumor immune cells, or T cells, may produce a stronger immune response that could help fight advanced melanoma.

When tested in mice with melanoma tumors that were unlikely to stimulate an immune response, the approach increased the number of anti-tumor immune cells, and those immune cells lived longer and functioned better than the standard therapy, empowering the cells to destroy the tumor.

BACKGROUND

Adoptive cell therapy is a type of immunotherapy that has had promising results for treating people with advanced cancers. The approach involves extracting and harvesting immune cells from a patient and engineering them in the laboratory to attack specific antigens on the surface of tumors. One challenge is that it requires giving patients interleukin 2, a protein signaling molecule in the immune system, to promote the development and expansion of the infused immune cells. But interleukin 2 can also activate cells to suppress the immune system, and because it is highly toxic, it can have serious adverse side effects.

Researchers have been seeking ways to produce large number of immune cells without exposing patients to those negative side effects -- including by combining adoptive cell therapy with other treatments.

METHOD

Researchers used mice to test NKTR-214 in combination with adoptive cell therapy. Using bioluminescence imaging, the researchers tracked the movement of T cells in the mice that received the combination therapy. The team observed an expansion of T cells in the spleen, the organ that helps accelerate the activation and expansion of T cells throughout the body. The T cells then migrated to the tumor, where they continued to have a long-lasting effect. The in vivo expansion and T cell accumulation in tumors was greatly improved when using NKTR-214 compared to using interleukin-2.

IMPACT

While immunotherapy has changed the face of cancer treatment for people with advanced cancers, it still only works in a small subset of patients. The results of the UCLA study suggest that using NKTR-214 in combination with adoptive cell therapy could be effective for more people with advanced solid tumors.
-end-
AUTHORS

The study's senior author is Dr. Antoni Ribas, professor of medicine at the David Geffen School of Medicine at UCLA and director of the Tumor Immunology Program at the Jonsson Cancer Center. The first author is Giulia Parisi, a research scientist at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and the Geffen School of Medicine.

JOURNAL

The study is published online in Nature Communications.

FUNDING

The study was funded in part by the National Institutes of Health and the Parker Institute for Cancer Immunotherapy.

NKTR-214 is an investigational drug invented and being developed by Nektar Therapeutics.

The UCLA Jonsson Comprehensive Cancer Center has more than 500 researchers and clinicians engaged in cancer research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the UCLA Jonsson Comprehensive Cancer Center is dedicated to promoting research and translating basic science into leading-edge clinical studies.

University of California - Los Angeles Health Sciences

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.