Safe potassium-ion batteries

January 31, 2020

Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology. In the journal Angewandte Chemie, scientists write that the novel electrolyte based on an organic phosphate makes the batteries safer and also allows for operation at reduced concentrations, which is a necessary condition for large-scale applications.

Lithium-ion technology still dominates energy-storage applications, but it has intrinsic disadvantages, among which are the price, environmental issues, and the flammability of the electrolyte. Therefore, in next-generation technologies, scientists are replacing the lithium ion with more abundant and much cheaper ions, such as the potassium ion. However, potassium and potassium-ion batteries also face safety issues, and nonflammable electrolytes are not yet available for them.

Materials scientist Zaiping Guo, and her team from the University of Wollongong, Australia have found a solution. The researchers developed an electrolyte based on a flame-retardant material and adapted it for use in potassium batteries. Besides providing nonflammability, it could be operated in batteries at concentrations that are suitable for large-scale applications, write the scientists.

This novel electrolyte contained triethyl phosphate as the sole component of the solvent. This substance is known as a flame retardant. It has been tested in lithium-ion batteries, but only very high concentrations provided enough stability for long-term operation, too high for industrial applications. The battery industry demands dilute electrolytes, which are cheaper and ensure better performances. By using potassium ions, however, the concentrations could be reduced, the authors reported. They combined the phosphate solvent with a commonly available potassium salt and obtained an electrolyte that did not burn and allowed stable cycling of the assembled battery concentrations of 0.9 to 2 moles per liter, which are concentrations that are suitable for larger scales; for example, in smart-grid applications.

Key to that performance was the formation of a uniform and stable solid-electrolyte interphase layer, according to the authors. They observed this layer, which ensures operability of the electrodes, only with the phosphate electrolyte. Conventional carbonate-based electrolytes were unable to build up this layer. The authors also reported high cycling stability; whereas, under the same conditions, the conventional carbonate-based electrolyte decomposed.

Guo and her team have demonstrated that next-generation potassium-ion batteries can be made safe by using a novel inorganic, phosphate-based electrolyte. They suggest that electrolytes based on flame retardants can be developed further and could be used for the design of other nonflammable battery systems.
-end-
About the Author

Dr. Guo is a distinguished Professor at the Australian Institute for Innovative Materials, University of Wollongong, Australia. Her group studies the fundamental properties of electrode materials for energy storage, focusing on developing next generation high-performance batteries for application in electric vehicles and green energy grids.

https://scholars.uow.edu.au/display/zaiping_guo

Wiley

Related Batteries Articles from Brightsurf:

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Fast calculation dials in better batteries
A simpler and more efficient way to predict the performance of batteries will lead to better batteries, according to Rice University engineers.

Building the batteries of cells
A new study, led by Dr. Ruchika Anand and Prof.

Researchers create a roadmap to better multivalent batteries
Lithium-ion batteries power everything from mobile phones to laptop computers and electric vehicles, but demand is growing for less expensive and more readily available alternatives.

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.

Read More: Batteries News and Batteries Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.