Nav: Home

Simplifying simple sequence repeats

January 31, 2020

Simple sequence repeats (SSRs) are regions of DNA with high diversity, and they have long been a mainstay for botanists examining the genetic structure of plant populations. However, as the cost of sequencing DNA continues to plummet and genetic technologies advance, newer techniques for mapping genetic diversity such as genotyping-by-sequencing (GBS) or RAD-seq have begun to rival the traditional use of SSRs. In research presented in a recent issue of Applications in Plant Sciences, Dr. Mark Chapman optimized the process of identifying SSRs from genomic and transcriptomic data, helping to assure the continued use and relevance of SSRs in the age of high-throughput sequencing (HTS).

Sequence data generated using HTS can be used to identify candidate SSRs, for which researchers can design primers to examine genetic structure in a species. However, little work has been done to calibrate or optimize this process, both in terms of guidelines for reasonable parameters to specify, or what kind or depth of sequencing may be sufficient and appropriate to identify a workable set of SSRs.

"I've used transcriptome data for over a decade to generate molecular markers and have often wondered whether using genomes or transcriptomes would be preferable," said Dr. Chapman, Associate Professor in Ecology and Evolutionary Biology at the University of Southampton. This study found that each data source had its benefits; genomic data may be preferable in species with low polymorphism, but transcriptomic data usually assembles into longer sequences more amenable to designing primers, and these primers may be more transferable across species.

"In addition, I always generate thousands of markers and only use a dozen or so, so I've always wondered what depth of sequencing would one have to generate to be sure of identifying a small number of markers for a basic population genetic study," said Dr. Chapman.

Researchers on a budget may look to generate the minimum necessary sequence data for SSR identification. Now these researchers have some guidance as to how many reads are sufficient: this study found that small assemblies of two million read pairs could generate about 200-2000 potential markers from the genome assemblies and about 600-3650 from the transcriptome assemblies.

As the cost of sequencing falls below the cost of labor for sample preparation, researchers are increasingly using newer techniques such as GBS and RAD-seq to map genetic diversity in populations. However, Dr. Chapman still sees a place for SSRs in the future of population genetics research. "SSRs have advantages over those other technologies that are unlikely to change even if costs go down, for example, the SSRs can be designed from specific genes of interest," said Dr. Chapman. "Also GBS and RAD-seq aren't really being explored for polyploids, whereas SSR scoring in polyploids can be done, with a bit of background information or careful design of primers. The untailored approach of GBS and RAD-seq is likely to resolve a lot of unscorable alleles in polyploids."

SSRs are a relatively inexpensive and efficient way to map genetic diversity in populations. The deluge of genetic data available from HTS can help to efficiently identify sets of SSRs, but until now there have not been clear guidelines for researchers seeking to do this work. In optimizing protocols and laying out major considerations in generating SSRs from genomic and transcriptomic data, Dr. Chapman has helped to bring SSR studies up to date.
-end-
Mark A. Chapman. 2019. Optimizing depth and type of high-throughput sequencing data for microsatellite discovery. Applications in Plant Sciences 7(11): 11298. https://doi.org/10.1002/aps3.11298

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of the Wiley Online Library.

For further information, please contact the APPS staff at apps@botany.org.

Botanical Society of America

Related Plant Sciences Articles:

Plant detectives develop new way to trace global spread of major plant disease
A team led by Oregon State University scientists has developed a way to potentially thwart the spread of a disease-causing bacterium that harms more than hundred plant species worldwide, an advance that could save the nursery industry billions of dollars a year.
A molecular map for the plant sciences
Plants are essential for life on earth. They provide food for essentially all organisms, oxygen for breathing, and they regulate the climate of the planet.
Behavioral sciences in the promotion of oral health
The importance and value of behavioral sciences in dentistry has long been recognized and over time behavioral sciences have expanded our understanding of oral health beyond 'disease' to a broader biopsychosocial concept of oral health.
'Big data' for life sciences
Scientists have produced a co-regulation map of the human proteome, which was able to capture relationships between proteins that do not physically interact or co-localize.
How a protein connecting calcium and plant hormone regulates plant growth
A new Tel Aviv University study finds that a unique mechanism involving calcium, the plant hormone auxin and a calcium-binding protein is responsible for regulating plant growth.
Tobacco plant 'stickiness' aids helpful insects, plant health
Researchers show beneficial relationship between 'sticky' tobacco plants and helpful insects that consume tobacco pests.
Social and behavioral sciences for the intelligence community
The social and behavioral sciences (SBS) offer an essential contribution to the mission of the U.S.
Preventing chemical weapons as sciences converge
Scientists from Bradford warn of increased chemical weapons risk during a period of very rapid scientific change.
Plant growth-promoting bacteria enhance plant salinity tolerance
Soil salinity is a serious problem in crop production, but the work of scientists helps to relieve it.
MSU plant sciences faculty part of international discovery in wheat genome sequence
Hikmet Budak, Winifred Asbjornson Plant Sciences Chair, is one of 200 international scientists who co-published an article this week detailing the description of the genome of bread wheat.
More Plant Sciences News and Plant Sciences Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.