Nav: Home

Study finds first major discovery in hydroformylation in 50 years

January 31, 2020

Baton Rouge, La.-- In a new study published in Science, an AAAS publication, LSU chemistry professor emeritus George Stanley and fellow LSU researchers from the Department of Chemistry and the Department of Biological Sciences discovered a new cationic cobalt bisphosphine hydroformylation catalyst system that is highly active and extremely robust.

Catalysts can be viewed as a parallel of the infamous philosopher's stone. They cannot change one element to another, but they can aid in transforming one chemical substance into another, while remaining unchanged themselves. Cobalt, a common mineral, does well in accepting atoms from other molecules and forming complex molecules.

Fellow researchers working on the study alongside Stanley include assistant professor of biological sciences David Vinyard and chemistry graduate students Drew Hood and Ryan Johnson. Researchers from ExxonMobil Chemical Company also contributed to the project.

Majority of industries--about 75 percent--choose to use rhodium-based catalysts because of the low-pressure technologies and cheaper-to-build facilities, but Stanley said not only can cobalt-based catalysts make more--and better versions--of certain aldehyde products, but the price of rhodium is excessive in comparison.

"A cationic cobalt bisphosphine catalyst is only about 20 times slower than the best rhodium catalysts," he said, "despite being 10,000 times less expensive." Today, the price of rhodium has reached closed to $9,800 an ounce, while cobalt has been steady around only 90 cents per ounce.

Louisiana, alone, has three large hydroformylation chemical plants: the ExxonMobil facility in Baton Rouge that uses the high-pressure cobalt catalyst technology; the Shell plant in Geismar that uses the medium-pressure phosphine-modified cobalt catalyst system; and the Dow chemical plant in Taft that uses low-pressure phosphine-modified rhodium catalysts.

"About 25 percent of products produced by hydroformylation require high-pressure cobalt or rhodium technologies," he explained. "This new cationic cobalt bisphosphine technology offers a far more energy efficient catalyst that can operate at medium pressures for these reactions."

Hydroformylation, or oxo, is the catalytic reaction that converts alkenes, carbon monoxide, and hydrogen into more complex organic products, like plasticizers--a substance added to produce flexibility and to reduce brittleness--and cleaning detergents.

Although the group's new cobalt catalyst has low selectivity to the generally desired linear aldehyde product for simple alkenes, Stanley said it has excellent activity and selectivity for internal branched alkenes that are difficult to hydroformylate.

For example, researchers are finding that washing detergents are less likely to dissolve in cold water because of their linearity--a trait found in rhodium catalysts. Cobalt catalysts can make detergent molecules with more "branches" that can react to grease and water in a more efficient way.

Stanley said this is the first major discovery in hydroformylation in at least 50 years.

"What excites me the most is to have a discovery that could have real-life practical applications," he said. "Coming up with a catalyst that is very energy efficient, very green, that can actually be used on the large-scale, industrial side of things is the dream of every chemist."
-end-
For more information on this new discovery, visit: https://science.sciencemag.org/content/367/6477/542

Louisiana State University

Related Chemistry Articles:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.
Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.