Optic nerve disease may cause sleep disorders

February 01, 2004

St. Louis, Feb. 1, 2004 -- Young people with eye diseases that damage the inner part of the retina and optic nerve are significantly more likely to have sleep disorders than those with other types of eye disease or those with normal vision, according to researchers at Washington University School of Medicine in St. Louis.

In the February issue of the journal Ophthalmology, the investigators report on a study involving 25 students, ages 12 to 20, from the Missouri School for the Blind and 12 students with normal sight from the Thomas Jefferson School, a boarding school in suburban St. Louis. The visually impaired students were divided into two groups: Those whose visual problems were related to optic nerve disease and those whose vision loss did not involve the optic nerve. The optic nerve is made up of ganglion cells, the type of cells targeted by eye diseases such as glaucoma.

Participants with optic nerve disease were 20 times more likely to be pathologically sleepy (napping 20 or more minutes per day) than those with normal sight. They also were nine times more likely to have pathologic sleepiness than children who were blind from non-optic nerve diseases.

"We suspect these patients have difficulty using daylight to synchronize their internal rhythms to the outside world," says senior investigator Russell N. Van Gelder, M.D., Ph.D., assistant professor of ophthalmology and visual sciences and of molecular biology and pharmacology at the School of Medicine.

In recent research, Van Gelder found that the retina contains not only the photoreceptor cells called rods and cones, which translate light into vision, but it also houses non-visual photoreceptor cells called intrinsically photosensitive retinal ganglion cells (ipRG cells) that function as the eye's "light meter."

In a camera, the light meter helps a photographer determine how to set the shutter speed and whether to use a flash. By determining light levels, ipRG cells help synchronize the body's sleep/wake cycle, reset the internal body clock, control the pupil of the eye's response to light and regulate the release of hormones such as melatonin. These ipRG cells continue to gather and use information about light even in animals that otherwise are visually blind.

"In our basic research, we have demonstrated that animals that lack rods and cones in the retina still have very normal circadian, or body clock, functions," he says. "But animals that lack the ganglion, or 'light meter' cells cannot synchronize their clocks to the outside world."

The ipRG cells that act as the eye's light meter are concentrated together at the head of the optic nerve, so Van Gelder's team wondered whether children with optic nerve disease might have problems regulating their internal body clocks. To measure the impact of the loss of those cells, first author Raymond Wee, a graduate student in Van Gelder's laboratory, had participants wear a device known as a wrist-worn actigraph. Worn like a watch, the actigraph measures every movement a person makes. A sophisticated computer algorithm then uses this movement information to determine whether a person was awake or asleep, active or inactive. Children in the study wore the actigraphs every day for two weeks.

Those with optic nerve disease had highly variable wake-up times and also had trouble falling asleep, compared to blind children without optic nerve damage and sighted children. Those sleep problems led them to nap more frequently, and children with optic nerve disease napped, on average, about 28 minutes a day.

None of the children in the study had any other conditions that might contribute to sleep disorders. None took sedative drugs, had attention-deficit hyperactivity disorder (ADHD) or were being treated with stimulant medications. So, the researchers believe the sleep problems these children experienced were directly related to their eye disease.

"Taken together, these results lead to the unexpected conclusion that eye disease can be a risk factor for sleep disorders, and the health of the optic nerve strongly influences risk," Van Gelder says.

In future studies, Van Gelder hopes to test whether treatment with melatonin helps regulate sleep patterns in children with optic nerve disease. Melatonin is a naturally occurring hormone that helps regulate the circadian clock. Its release is related to the eye's light meter function.

But even before he learns whether it's possible to help these patients to synchronize their internal clocks to the outside world, Van Gelder believes it is important for health professionals to begin considering the impact of eye disease on sleep.

"Physicians and other health-care professionals should be sensitive to the possibility of daytime sleepiness or insomnia, particularly in patients with severe optic nerve disease," Van Gelder says. "Your eye doctor might want to make a point of asking how you've been sleeping."
-end-
Wee R, Van Gelder RN. Sleep disturbances in young subjects with visual dysfunction. Ophthalmology, 111:2 pp. 297-302, Feb 2004.

This research was supported by grants from the Doris Duke Foundation, Research to Prevent Blindness, the Becker/Association of University Professors of Ophthalmology/Research to Prevent Blindness Physician-Scientist Award, the Culpepper Physician-Scientist Award, the National Alliance for Schizophrenia and Affective Disorders and the National Eye Institute of the National Institutes of Health.

Washington University School of Medicine

Related Sleep Articles from Brightsurf:

Size and sleep: New research reveals why little things sleep longer
Using data from humans and other mammals, a team of scientists including researchers from the Santa Fe Institute has developed one of the first quantitative models that explains why sleep times across species and during development decrease as brains get bigger.

Wind turbine noise affects dream sleep and perceived sleep restoration
Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows.

To sleep deeply: The brainstem neurons that regulate non-REM sleep
University of Tsukuba researchers identified neurons that promote non-REM sleep in the brainstem in mice.

Chronic opioid therapy can disrupt sleep, increase risk of sleep disorders
Patients and medical providers should be aware that chronic opioid use can interfere with sleep by reducing sleep efficiency and increasing the risk of sleep-disordered breathing, according to a position statement from the American Academy of Sleep Medicine.

'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.

Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.

Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.

Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.

Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?

Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.

Read More: Sleep News and Sleep Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.