Unraveling the viral mechanism

February 01, 2006

Using powerful computer tools and cryo-electron microscopes, researchers at Baylor College of Medicine unmasked the secrets of a tiny virus that infects bacteria and, in doing so, opened the door to a better understanding of a variety of viruses that infect people and animals.

In a report that appears in and on the cover of the current issue of the journal Nature, Dr. Wah Chiu, professor in the BCM department of biochemistry and molecular biology and director of the National Center for Macromolecular Imaging, and his colleagues, describe how they were able to look beyond the highly symmetrical ball-like surface protein shell of the episilon15 bacteriophage that infects Salmonella bacteria and describe different molecular parts involved in binding to host cells, injecting DNA into the cell and packaging it during the virus formation.

"This methodology, in theory, can be applicable to other kinds of human viruses," said Chiu. In fact, he said, this bacteriophage appears structurally similar although smaller than the herpes simplex virus, which causes cold sores and related infections. That means it should be possible to use these tools to understand better how this and similar viruses infect nerve cells and, some day, interrupt that disease process.

The advance occurred because of innovations in computational method development in addition to the powerful cryoelectron microscopes operated at very low specimen temperature and very high energy that Chiu and others use in their work that looks at different biological nano-machineries at the nanoscale.

In fact, Dr. Wen Jiang, previously trained in the BCM Graduate School for Biomedical Sciences' Graduate Program in Structural and Computational Biology and Molecular Biophysics (SCBMB), developed a new image reconstruction algorithm. These developments enabled him and his co-authors at MIT to see through the bacteriophage at very high resolution. "It turns out that, in addition to the surface protein, there are other proteins that make this virus viable," said Chiu. In particular, proteins protruding at one of the twelve vertices of the virus shell contain structures like tails that actually anchor the bacteriophage to the surface of the bacteria itself. The shape of these "tail" structures gives clues about how the virus or phage and cell interact.

Then as Chiu and Jiang used the computer visualization tool to strip away the surface shell entirely, they saw the concentric coil of DNA underneath. They also identified a protein "hub" through which DNA enters and exits the virus.

"It's like a garden hose, in some ways," said Chiu. "You extend it. If you put it away in a heap, then you have trouble using it again. But if you coil the hose orderly, then it is easy to use again. I think the virus does the same thing. The virus genome has to enter the capsid during the birth of the virus and then inject into the cell during infection. It has to come in and get out easily. The hub anchors the tail spikes, but is also a conduit for the DNA to get in and out."

Below is the "portal" that acts as a motor using energy to coil the threads of double-stranded DNA. Using the capabilities of his program, Chiu and colleagues identified 12 protein copies that make up this viral motor.

Chiu anticipates using the same technique to study other spherical viruses as soon as he can obtain the computer power to study larger structures. Soon, he said, he hopes to be able to study the interactions of virus and cell more closely.

Others who participated in his study include Juan Chang (a current graduate student in the SCBMB Program) and Joanita Jakana of BCM, Dr. Peter Weigele and Professor Jonathan King of the Massachusetts Institute of Technology. Jiang is now a faculty with Purdue University.
-end-


Baylor College of Medicine

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.