Nav: Home

Researchers find link between food odors and lifespan in fruit flies

February 01, 2007

Researchers hoping to learn why organisms tend to live longer if their intake of calories is restricted have made a startling discovery - in fruit flies, just the smell of food can have a negative effect on longevity.

Scientists have known for decades that restricted dietary intake can increase the lifespan of many species, but the mechanism that causes this is not understood. Short-lived organisms like the fruit fly, Drosophila melanogaster, are studied to help unravel this mystery, and the knowledge gained could have important implications for human health.

In a paper to be published in Science, the journal of the American Association for the Advancement of Science, a group of researchers from Baylor College of Medicine in Houston, New Mexico State University in Las Cruces and the University of Houston report that exposure to food odors can modulate lifespan and partially reverse the longevity-extending effects of dietary restriction in fruit flies.

"Not only can they not have their cake - they can't smell their cake" without shortening their lifespans, said Wayne Van Voorhees, a faculty member in the Molecular Biology Program at New Mexico State University and a member of the research collaboration.

The researchers, led by Scott Pletcher of the Huffington Center on Aging at Baylor, measured the lifespans of different strains of fruit flies in the presence and absence of food odors - specifically live yeast, which is an important component of the flies' diets. Exposure to food odors reduced lifespan in flies that had been subjected to dietary restriction. The reductions ranged from 6 percent to 18 percent - not as much reduction as actual consumption of more food caused, but significant enough to show that food odors have a modulating effect on lifespan.

The researchers also studied genetically altered strains of fruit flies to determine whether loss of olfactory function - the sense of smell - had an effect on lifespan. They found that in all cases, the longevity of the mutant flies was considerably greater than their wild-type controls.

The paper will be published by Science Express, an online publication of the AAAS, on Feb. 1. Science Express is used for rapid publication of selected research papers that are published later in the print version of Science.

Van Voorhies did the metabolic measurements for the study, using sensitive detectors in his laboratory at NMSU to analyze the aerobic respiration of the tiny flies. Carefully controlling the flow and oxygen content of air flowing to the flies in sealed systems, he can determine the flies' metabolic rates by analyzing the carbon dioxide they give off.

At the cellular level, this metabolic process is essentially the same in all organisms. Fruit flies and other short-lived organisms make useful "model organisms" for studies such as this because studying humans is impractical, Van Voorhies noted.

"If you are studying longevity, by definition the study is going to take longer than the lifespan of the researcher," he said.

Van Voorhies said metabolic studies of the fruit flies showed that longer lifespans in those subjected to caloric restriction were not simply a result of slower metabolism.

"A simple way to get a fruit fly to live longer is to put it at lower temperatures," he said. "It will live longer but everything is going slower in the animal, so you haven't fundamentally altered the way it has aged. So we wanted to make sure the effect of caloric restriction wasn't just slowing the animals down, and we found that it wasn't. You can have a high metabolic rate and be long-lived, and that's an encouraging observation."

Ultimately, understanding any link between human longevity and caloric intake, and the role our sense of smell may play in the process, will require more knowledge of the fundamental mechanisms at work, Van Voorhies said.

"You continue to work on the model organisms to try to figure out what the actual mechanism is, and then you can try to apply it to people," he said. "The pharmaceutical companies would like to be able to mimic the beneficial effects of caloric restriction by having you take a pill. But for that to work, you need to understand the mechanism by which caloric restriction extends longevity."

Sometimes - as in the new discovery of a link between food odors and lifespan in fruit flies - the questions get more complicated as scientists gain more knowledge.

Researchers hoping to learn why organisms tend to live longer if their intake of calories is restricted have made a startling discovery - in fruit flies, just the smell of food can have a negative effect on longevity.

Scientists have known for decades that restricted dietary intake can increase the lifespan of many species, but the mechanism that causes this is not understood. Short-lived organisms like the fruit fly, Drosophila melanogaster, are studied to help unravel this mystery, and the knowledge gained could have important implications for human health.

In a paper to be published in Science, the journal of the American Association for the Advancement of Science, a group of researchers from Baylor College of Medicine in Houston, New Mexico State University in Las Cruces and the University of Houston report that exposure to food odors can modulate lifespan and partially reverse the longevity-extending effects of dietary restriction in fruit flies.

"Not only can they not have their cake - they can't smell their cake" without shortening their lifespans, said Wayne Van Voorhees, a faculty member in the Molecular Biology Program at New Mexico State University and a member of the research collaboration.

The researchers, led by Scott Pletcher of the Huffington Center on Aging at Baylor, measured the lifespans of different strains of fruit flies in the presence and absence of food odors - specifically live yeast, which is an important component of the flies' diets. Exposure to food odors reduced lifespan in flies that had been subjected to dietary restriction. The reductions ranged from 6 percent to 18 percent - not as much reduction as actual consumption of more food caused, but significant enough to show that food odors have a modulating effect on lifespan.

The researchers also studied genetically altered strains of fruit flies to determine whether loss of olfactory function - the sense of smell - had an effect on lifespan. They found that in all cases, the longevity of the mutant flies was considerably greater than their wild-type controls.

The paper will be published by Science Express, an online publication of the AAAS, on Feb. 1. Science Express is used for rapid publication of selected research papers that are published later in the print version of Science.

Van Voorhies did the metabolic measurements for the study, using sensitive detectors in his laboratory at NMSU to analyze the aerobic respiration of the tiny flies. Carefully controlling the flow and oxygen content of air flowing to the flies in sealed systems, he can determine the flies' metabolic rates by analyzing the carbon dioxide they give off.

At the cellular level, this metabolic process is essentially the same in all organisms. Fruit flies and other short-lived organisms make useful "model organisms" for studies such as this because studying humans is impractical, Van Voorhies noted.

"If you are studying longevity, by definition the study is going to take longer than the lifespan of the researcher," he said.

Van Voorhies said metabolic studies of the fruit flies showed that longer lifespans in those subjected to caloric restriction were not simply a result of slower metabolism.

"A simple way to get a fruit fly to live longer is to put it at lower temperatures," he said. "It will live longer but everything is going slower in the animal, so you haven't fundamentally altered the way it has aged. So we wanted to make sure the effect of caloric restriction wasn't just slowing the animals down, and we found that it wasn't. You can have a high metabolic rate and be long-lived, and that's an encouraging observation."

Ultimately, understanding any link between human longevity and caloric intake, and the role our sense of smell may play in the process, will require more knowledge of the fundamental mechanisms at work, Van Voorhies said.

"You continue to work on the model organisms to try to figure out what the actual mechanism is, and then you can try to apply it to people," he said. "The pharmaceutical companies would like to be able to mimic the beneficial effects of caloric restriction by having you take a pill. But for that to work, you need to understand the mechanism by which caloric restriction extends longevity."

Sometimes - as in the new discovery of a link between food odors and lifespan in fruit flies - the questions get more complicated as scientists gain more knowledge.
-end-


New Mexico State University

Related Fruit Flies Articles:

New clues emerge about how fruit flies navigate their world
Janelia Research Campus scientists have uncovered new clues about how fruit flies keep track of where they are in the world.
Frisky female fruit flies become more aggressive towards each other after sex
Female fruit flies start headbutting each other after mating, becoming significantly more aggressive and intolerant Oxford University research has revealed.
What obese fruit flies may tell us about the evolution of cold tolerance
Researchers have hypothesized that migrations into higher, colder latitudes may lead to evolution of fast-burning metabolisms that keep cells warm in chilly conditions.
Fruit flies halt reproduction during infection
A protective mechanism that allows fruit flies to lay fewer eggs in response to bacterial infection is explained in a study published in the journal eLife.
Matching up fruit flies, mushroom toxins and human health
Some fruit flies build up tolerance to the toxin alpha-amanitin; the genetic mechanisms behind this adaptation link to an important metabolic pathway.
Enzyme key to learning in fruit flies
University of California, Riverside-led research finds enzyme that is key to learning in fruit flies.
When it comes to mating, fruit flies can make rational choices
In a paper published Jan. 17 in the journal Nature Communications, University of Washington researchers report that fruit flies -- perhaps the most widely studied insect in history -- show signs of rational decision-making when choosing a mate.
New study refutes how fruit flies developed their tolerance for alcohol
Scientists from the University of Chicago, the University of Nebraska-Lincoln and the University of Wisconsin-Madison conducted experiments investigating whether a molecular change in an enzyme gave the Drosophila melanogaster fruit fly species its superior ability to metabolize alcohol.
Scientists 'plug in' to circuitry behind sex in male fruit flies
Researchers from the University of Oxford have identified a small neural circuit in male fruit flies that has evolved to allow them to perform the complex mating ritual.
Fruit flies: Food, camera, action!
Fruit flies deprived of specific essential nutrients alter their food choices -- and even the way they search for food.

Related Fruit Flies Reading:

Fruit Flies: Biology and Management
by Martin Aluja (Editor), Pablo Liedo (Editor)

Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior
by Martin Aluja (Editor), Allen Norrbom (Editor)

Keys to the Tropical Fruit Flies of South-East Asia: (Tephritidae: Dacinae)
by Richard A. I. Drew (Author), Meredith C. Romig (Author)

Live Like a Fruit Fly: The Secret You Already Know
by Gabe Berman (Author)

Fruit Flies of Economic Significance: Their Identification and Bionomics (Cabi)
by Ian M. White (Author), Marlene M. Elson-Harris (Author)

Fruit Flies: How to Get Rid of Fruit Flies and Other Household Flies

Fruit Fly Pests: A World Assessment of Their Biology and Management
by Bruce A. McPheron (Editor), Gary J. Steck (Editor)

Fruitfly Rabbi: Scientific or spiritual? Which path will Josh Stein pursue?
by Chana Shapiro (Author), Meta Miller (Contributor)

Fruit Fly Research; 1993 Supplement to the Usda-Ars Action Plan: First Review, Beltsville, Maryland, June 28, 1993 (Classic Reprint)
by R. M. Faust (Author)

Fruit Flies and the Sterile Insect Technique
by Carrol O. Calkins (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...