'Live fast, die young' galaxies lose the gas that keeps them alive

February 01, 2015

Galaxies can die early because the gas they need to make new stars is suddenly ejected, research published today suggests.

Most galaxies age slowly as they run out of raw materials needed for growth over billions of years. But a pilot study looking at galaxies that die young has found some might shoot out this gas early on, causing them to redden and kick the bucket prematurely.

Astrophysicist Ivy Wong, from the University of Western Australia node of the International Centre for Radio Astronomy Research (ICRAR), said there are two main types of galaxies; 'blue' galaxies that are still actively making new stars and 'red' galaxies that have stopped growing.

Most galaxies transition from blue to 'red and dead' slowly after two billion years or more, but some transition suddenly after less than a billion years--young in cosmic terms.

Dr Wong and her colleagues looked for the first time at four galaxies on the cusp of their star formation shutting down, each at a different stage in the transition.

The researchers found that the galaxies approaching the end of their star formation phase had expelled most of their gas.

Dr Wong said it was initially hard to get time on telescopes to do the research because other astronomers did not believe the dying galaxies would have any gas left to see.

The exciting result means the scientists will be able to use powerful telescopes to conduct a larger survey and discover the cause of this sudden shutdown in star formation.

Dr Wong said it is unclear why the gas was being expelled. "One possibility is that it could be blown out by the galaxy's supermassive black hole," she said.

"Another possibility is that the gas could be ripped out by a neighbouring galaxy, although the galaxies in the pilot project are all isolated and don't appear to have others nearby."

Swiss Federal Institute of Technology Professor Kevin Schawinski said the researchers predicted that the galaxies had to rapidly lose their gas to explain their fast deaths.

"We selected four galaxies right at the time where this gas ejection should be occurring," he said. "It was amazing to see that this is exactly what happens!"

The study appeared in the journal Monthly Notices of the Royal Astronomical Society, published by Oxford University Press.
-end-
Further information: ICRAR is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

Original publication details: 'Misalignment between cold gas and stellar components in early-type galaxies' O. Ivy Wong, K. Schawinski, G.I.G. J'ozsa, C.M. Urry, C.J. Lintott, B.D. Simmons, S. Kaviraj and K.L. Masters. Published in the Monthly Notices of the Royal Astronomical Society February 2, 2015. Available at http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stu2724.

Contact Details:
Dr Ivy Wong, ICRAR - UWA
Ph: +61 8 6488 7761 | M: +61 402 828 363 | E: Ivy.Wong@icrar.org

Pete Wheeler, ICRAR Media Contact
Ph: +61 8 6488 7758 | M: +61 423 982 018 | E: Pete.Wheeler@icrar.org

David Stacey, UWA Media Manager
Ph: +61 8 6488 7977 | E: David.Stacey@uwa.edu.au

Professor Kevin Schawinski, (Swiss Federal Institute of Technology, Zurich)
Ph: +44 44 633 07 51 | M: +41 79 647 11 56 | E: Kevin.Schawinski@phys.ethz.ch

International Centre for Radio Astronomy Research

Related Star Formation Articles from Brightsurf:

Low-metallicity globular star cluster challenges formation models
On the outskirts of the nearby Andromeda Galaxy, researchers have unexpectedly discovered a globular cluster (GC) - a massive congregation of relic stars - with a very low abundance of chemical elements heavier than hydrogen and helium (known as its metallicity), according to a new study.

Astronomers turn up the heavy metal to shed light on star formation
Astronomers from The University of Western Australia's node of the International Centre for Radio Astronomy Research (ICRAR) have developed a new way to study star formation in galaxies from the dawn of time to today.

New observations of black hole devouring a star reveal rapid disk formation
When a star passes too close to a supermassive black hole, tidal forces tear it apart, producing a bright flare of radiation as material from the star falls into the black hole.

How galaxies die: New insights into the quenching of star formation
Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies.

The cosmic commute towards star and planet formation
Interconnected gas flows reveal how star-forming gas is assembled in galaxies.

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.

Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.

Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.

Read More: Star Formation News and Star Formation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.