Nav: Home

Planctomycete bacterium's internal membranes contain nuclear pore-like structures

February 01, 2017

A planctomycete bacterium features structures embedded in its internal membranes which resemble eukaryotic nuclear pores, according to a study published February 1, 2017 in the open-access journal PLOS ONE by Evgeny Sagulenko and a team led by John Fuerst from the University of Queensland, Australia.

Gemmata obscuriglobus and other planctomycetes are unusual bacteria in having internal membranes which split off their genetic material from the rest of the cell. This has parallels with the nucleus of a eukaryotic cell. The authors of the present study investigated the internal membranes of G. obscuriglobus in detail, using various electron microscopy methods to analyse the structures embedded in these membranes.

The researchers found that the internal membranes of G. obscuriglobus contain embedded pore-like protein complexes whose structure is similar to that of eukaryotic nuclear pores, and may be the first such structures found in bacteria. Like eukaryote nuclear pores, the bacterial structures contain a basket structure, spokes, and eight-fold rotational symmetry. Some of the proteins associated with the complexes even contain the same structural domains as eukaryote nuclear pore proteins.

It is not clear whether eukaryotic nuclear pores evolved from these similar bacterial pore-like structures or whether the two structures evolved separately, and more detailed analysis of the structures would be needed to help determine their evolutionary origin. Nonetheless, this may be the first description in bacteria of a nuclear pore-like structure, previously thought to be the sole preserve of eukaryotes.

"We have discovered structures in internal membranes of a bacterium resembling in important ways the nuclear pores of eukaryote cell nuclei, previously thought to be unique to organisms more complex than bacteria, ranging from yeast to human," says John Fuerst. "Finding nuclear pore-like structures in the bacterial species Gemmata obscuriglobus is significant for understanding how the cell nucleus and the pores embedded in its membrane envelope could have evolved, a major unsolved problem in evolutionary cell biology."
-end-
In your coverage please use this URL to provide access to the freely available paper: http://dx.plos.org/10.1371/journal.pone.0169432

Citation: Sagulenko E, Nouwens A, Webb RI, Green K, Yee B, Morgan G, et al. (2017) Nuclear Pore-Like Structures in a Compartmentalized Bacterium. PLoS ONE 12(2): e0169432. doi:10.1371/journal.pone.0169432

Funding: JAF was supported by Australian Research Council Discovery Project DP0881485. AMP was supported by Royal Society of New Zealand RDF-UOC1101. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...