Nav: Home

Cocktail of bacteria-killing viruses prevents cholera infection in animal models

February 01, 2017

BOSTON (Feb. 1, 2017)--Oral administration of a cocktail of three viruses, all of which specifically kill cholera bacteria, prevents infection and cholera-like symptoms in animal model experiments, report scientists from Tufts University School of Medicine (TUSM) and the Sackler School of Graduate Biomedical Sciences at Tufts in Nature Communications on Feb. 1. The findings are the first to demonstrate the potential efficacy of bacteria-killing viruses--known as bacteriophages, or phages--as an orally administered preventive therapy against an acute gastrointestinal bacterial disease.

"While phage therapy has existed for decades, our study is proof-of-principle that it can be used to protect against infection and intervene in the transmission of disease," said senior study author Andrew Camilli, Ph.D., Howard Hughes Medical Institute Investigator and professor of molecular biology and microbiology at TUSM. "We are hopeful that phages can someday be a tool in the public health arsenal that helps decrease the global burden of cholera, which affects up to four million people around the world each year."

In previous work, Camilli and colleagues searched for phages that are specific for Vibrio cholerae, the bacterium that causes cholera--a potentially lethal infectious disease marked by severe diarrhea and dehydration. While phages that kill V. cholerae are abundant in nature, the team identified three strains that uniquely retained the ability to kill V. cholerae within the small intestine, the site of infection in humans. These phages function by targeting bacterial surface receptors normally involved in infectiousness, making them ideal therapeutic candidates--to develop resistance, cholera bacteria must acquire mutations in these receptors, which cause the bacteria to become less infectious.

Prevent and protect

In the current study, a team comprised of Camilli, Minmin Yen, Ph.D., recent graduate of the Molecular Microbiology Program at the Sackler School, and postdoctoral fellow Lynne Cairns, Ph.D., carried out a series of experiments in small animal models of cholera to test the efficacy of these phages as a preventative treatment. Animals were given an oral dose of a cocktail containing all three phages, at time points ranging from three to 24 hours before infection with a standardized amount of V. cholerae bacteria.

A preventative dose of the phage cocktail eliminated V. cholerae in the small intestines of over half of treated animals when given three hours before infection. In remaining animals, and for those treated up to 24 hours before infection, bacteria numbers were reduced 500-fold or more on average, compared to untreated controls. Overall, treatment was most effective in reducing bacterial load when given between three and 12 hours before infection.

The team found no evidence of cholera-like diarrhea and no significant weight loss in treated animals.

To study bacterial resistance, one of the historical obstacles to the use of phages as a therapy, the researchers isolated V. cholerae that survived treatment and conducted whole-genome and molecular analyses. While some bacteria acquired resistance against one or two of the phages, no bacteria were resistant to all three phages in the cocktail. As expected based on previous work, surviving bacteria that developed phage resistance had mutations in key protein receptors that rendered the bacteria avirulent and unable to cause infection.

"It took almost a decade of work, from our lab and collaborators around the world, to identify these phages, understand their life cycle, reveal the underlying biology and mechanisms by which they attack cholera and show how resistance develops," said lead study author Minmin Yen, who conducted this research as part of her graduate thesis and is now a postdoctoral fellow in the Camilli lab. "By building on that work, we are now able to demonstrate that these phages can be effective at protecting against cholera and that the bacteria do not develop resistance to the phage cocktail."

Filling a treatment gap

Discovered roughly a century ago, bacteriophages have remained relatively unexplored in Western medicine as a therapy due to the prevalence of antibiotics. However, the dramatic rise of antibiotic-resistant bacteria has led to renewed interest in phage therapy, which can target specific strains of harmful bacteria while leaving host cells and beneficial bacteria unaffected.

Carried by contaminated water, cholera spreads quickly through communities during outbreaks. A primary path of transmission is from infected individuals to other household members, a process that typically occurs within one to two days. The research team envisions the phage cocktail as a rapid-acting preventative oral medication that can be repeatedly taken during this critical window. Reducing household transmission when an outbreak begins would help slow the spread of cholera and lessen the impact of the disease on communities.

With animal model experiments established, Camilli's team and collaborators are now exploring human clinical trials. Phage therapy has a well-established safety profile in humans, based on decades of use in eastern European countries such as Georgia. In addition, phages are the most abundant organism on Earth, and humans are continuously exposed to them with no harm. The team is also investigating the production of phages at scale, and believes that it can be done economically and priced appropriately for use in the developing world. They recently formed a company--PhagePro, which received seed funding as a winner in the Tufts 100K New Ventures Competition--to further test and develop their phage cocktail. Tufts University has filed a related patent application.

If successful, their efforts could lead to an important tool for public health professionals. A cholera vaccine exists and is recommended by the World Health Organization, but needs to be given at least two weeks in advance to be effective. Rehydration therapy is the standard treatment for cholera, but clean water is typically hard to come by during an outbreak. Antibiotics are effective at eliminating cholera bacteria, but they contribute to the spread of antibiotic-resistant strains and can harm beneficial bacteria such as those in the large intestine.

"A preventative phage treatment is unlikely to eradicate cholera, but we think that it could fill an important gap in treatment, which is immediate protection against transmission in households," said Camilli, who is also faculty in the Molecular Microbiology Program at the Sackler School. "Additional work needs to be done, particularly a deeper understanding of phage biology while inside the gastrointestinal system, but if we are able to confirm its safety profile and efficacy in humans, it has the potential to be the best option for many communities affected by cholera."
This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (award AI055058) and the Howard Hughes Medical Institute.

Yen et al. "A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models." Nature Communications (2017). DOI: 10.1038/ncomms14187.

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences are international leaders in medical and population health education and advanced research. Tufts University School of Medicine emphasizes rigorous fundamentals in a dynamic learning environment to educate physicians, scientists, and public health professionals to become leaders in their fields. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, the biomedical sciences, and public health, as well as for research at the cellular, molecular, and population health level. The School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical and prevention science.

Tufts University, Health Sciences Campus

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".