Straightforward biosynthesis of functional bulk nanocomposites

February 01, 2019

Interest in constructing bulk nanocomposite materials from biosourced and renewable nanoscale building blocks is growing. As a crystalline cellulosic polymer, cellulose is the most abundant biosourced and renewable polymeric material on earth, which can be extracted from plant or produced by bacteria. Bacterial cellulose (BC) nanofibrils possess a high tensile strength as high as steel and Kevlar and spontaneously formed a robust three-dimensional (3D) nanofibrous network, which makes it an ideal platform for design of functional bulk nanocomposites. BC and its nanocomposites have been widely used in many fields, including acoustic membrane, electron device, energy storage and catalyst. However, the conventional process for fabricating uniform BC nanocomposites involved the disintegration of 3D network structure for solution processing, which seriously impaired the mechanical performance of the nanocomposites. So, strategies without disintegration the 3D network structure are core important for constructing bulk BC based nanocomposites.

In response to this challenge, recently, researchers led by Professor Shu-Hong Yu from the University of Science and Technology of China (USTC) successfully developed a general and scalable biosynthesis strategy, which involves simultaneous growth of cellulose nanofibrils through microbial fermentation and co-deposition of various kinds of nanoscale building blocks (NBBs) through aerosol feeding on solid culture substrates (Fig. 1).

This method overcome the diffusion limitation of nanoscale units from the liquid medium to the upper surface layer of new-grown BC, through which, researchers successfully prepared a series of bulk nanocomposites of BC and nanoscale building blocks of different dimension, shapes, and sizes (Fig.1 b-d). Particularly, the method can be easily scaled up for potentially industrial applications by using large reactors and increasing the number of nozzles (Fig. 1c).

To demonstrate the merit and uniqueness of this method, researchers tuned the content of CNTs in a wide range from 1.5 wt% to 75 wt% by changing the concentration of CNTs suspensions. Note that conventional fabrication method for CNTs nanocomposites that requires the mixing of CNTs dispersions with polymer solutions is only applicable to prepare polymer nanocomposites with low CNTs (< 10 wt%), as it is extremely difficult to homogeneously disperse high-concentration CNTs in polymeric hosts. To further demonstrate the advantages of the biosynthesis strategy for preparing mechanically reinforced nanocomposites, CNTs/BC nanocomposite films were also prepared for comparison by blending of CNTs and disintegrated BC suspensions. Both the tensile strength and Young's modulus of the biosynthesized CNTs/BC nanocomposites were remarkably higher than that blended samples. As a result, the biosynthesized CNTs/BC nanocomposites achieve simultaneously an extremely high mechanical strength and electrical conductivity (Fig. 1g, h), which is of crucial importance for practical application.

This general and scalable biosynthesis strategy makes it possible for simultaneous growth of cellulose nanofibrils through microbial fermentation and co-deposition of various kinds of nanoscale building blocks through aerosol feeding on solid culture substrates. "By upgrading the state-of-the-art production line that produces pure bacterial cellulose pellicles, industrial-scale production of these bulk nanocomposite materials for practical applications can be expected in the near future.", the scientists forecast.
This research received funding from the National Natural Science Foundation of China, the Ministry of Science and Technology of China, and the Chinese Academy of Sciences.

See the article:

A general biosynthesis strategy of functional bulk nanocomposites
Natl Sci Rev 2019; doi: 10.1093/nsr/nwy144

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Cellulose Articles from Brightsurf:

Bacterial cellulose degradation system could give boost to biofuels production
Researchers have uncovered details of how a certain type of bacteria breaks down cellulose--a finding that could help reduce the cost and environmental impact of the use of biomass, including biofuel production.

Secret of plant dietary fibre structure revealed
Researchers from The University of Queensland and KTH Royal Institute of Technology in Sweden have uncovered the mechanics of how plant cell walls balance the strength and rigidity provided by cellulose with its ability to stretch and compress.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

How bacteria adhere to fiber in the gut
Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut.

Discovery reveals how plants make cellulose for strength and growth
The discovery unveils the molecular machinery that plants use to weave cellulose chains into cable-like structures called 'microfibrils.'

Cellulose for manufacturing advanced materials
The last decade has seen an increase in scientific publications and patents on cellulose, the most abundant natural polymer.

Towards a green future: Efficient laser technique can convert cellulose into biofuel
The plant product cellulose is the most abundant form of biomass globally and can be converted into useful products such as biofuels.

Breaking down stubborn cellulose in time lapse
Researchers at Graz Unversity of Technology in Austria have for the first time ever succeeded in visualizing at the single-molecule level the processes involved in a biological nanomachine, known as the cellulosome, as it degrades crystalline cellulose.

Coffee grounds show promise as wood substitute in producing cellulose nanofibers
Researchers at Yokohama National University (YNU) meticulously examined cellulose nanofibers extracted from spent coffee grounds, identifying them as a viable new raw source.

Printing complex cellulose-based objects
Researchers from ETH Zurich and the Swiss Federal Laboratories for Materials Science and Technology (Empa) have set a new world record: they 3D printed complex objects with higher cellulose content than that of any other additively manufactured cellulose-based parts.

Read More: Cellulose News and Cellulose Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to