Breaching the horizons: Universal spreading laws confirmed

February 01, 2019

The universal laws governing the dynamics of interacting quantum particles are yet to be fully revealed to the scientific community. A team of researchers at the Center for Theoretical Physics of Complex Systems (PCS), within the Institute for Basic Science (IBS in Daejeon, South Korea) have proposed to use an innovative toolbox that enables them to obtain simulation data of equivalent to 60 years' experimental time. By extending the computational horizons from one day to the unprecedented time scales, the IBS researchers were able to confirm that a cloud of quantum particles continue to spread even when particle to particle interactions originally deemed to be the activator of the spreading, exert almost no strength. Their findings are published online in 30 January 2019 at Physical Review Letters.

The work deals with two of the most fundamental phenomena of condensed matter: interaction and disorder. Think about ultra-cold atomic gases. One atom from the gas is a quantum particle, and thus a quantum wave as well, which has both amplitude and phase. When such quantum particles, i.e. waves fail to propagate in a disordered medium, they get trapped and come to a complete halt. This destructive interference of propagating waves is Anderson localization.

Microscopic particles, described by quantum mechanics, interact when approaching each other. The presence of interaction, at least initially, destroys localization in a cloud of quantum particles, and allows the cloud to escape and smear out, though very slowly and subdiffusively. When atoms interact (collide) they exchange not only energy and momentum, but change their phases as well. The interaction destroys regular wave patterns, leading to the loss of the phase information. As time goes on the cloud spreads and thins out.

Hot debates over the past decade were devoted to the question whether the process will stop because the effective strength of interaction becomes too low, or not. Experiments with Bose-Einstein condensates of ultracold Potassium atoms have been conducted for up to 10 seconds as researchers try hard to keep the atomic gas stable. Numerical computations were performed for an equivalent of one day. Remarkably theoretical computational physics was already in a unique situation to be way superior to experiments!

The team of IBS researchers, led by Sergej Flach, decided to give the cloud dynamics a novel hard numerical test and to extend the computational horizons from one day to 60 years in experimental time equivalent. The main challenge is the slow pace of the process: one has to simulate the dynamics of the cloud for a long time to see any significant changes. The new goal was to extend the previous records drastically, by a factor of at least ten thousand, and to simultaneously develop a new approach to fast simulations of computationally hard physical models.

The research team observed subdiffusive cloud spreading up to the record timescales investigated. The key to the success was the usage of so-called Discrete Time Quantum Walks - theoretical and experimental platforms for quantum computations. Their unique feature is that time doesn't flow continuously, but increments abruptly, becoming one of the main speedup factors. Several additional technical tools were used to realize the new record times: massive supercomputing powers of IBS, program optimization, and the use of clusters of graphical processing units (GPU).

The results of the team pose complicated new questions on the understanding of the interplay of interaction and disorder. IBS-PCS researchers continue to work on different aspects of the problem, using tools including Discrete Time Quantum Walks. "We are currently employing the same technique to crack several other long-standing problems that require novel computational approaches and powers", says Ihor Vakulchyk - PhD student of the research team. The proposed toolbox opens seemingly limitless possibilities for the novel field of Quantum Modeling and optimization of computer models in physics.
-end-


Institute for Basic Science

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.