Nav: Home

Gene therapy cassettes improved for muscular dystrophy

February 01, 2019

Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance. The cassettes, which carry the therapy into muscle cells, contain newer versions of a miniaturized treatment gene. The micro-dystrophin, as the treatment is called, has been restructured to enhance its functionality.

The revamped versions were developed and tested at UW Medicine labs in animal models of muscular dystrophy. The results will be published Feb. 1 in Molecular Therapy, a Cell Press journal.

Duchenne muscular dystrophy is a life-shortening genetic disorder characterized by debilitating muscle weakness that gets worse with time. The condition almost exclusively affects males. It's caused by X chromosome mutations that interfere with the production of dystrophins, which build and maintain healthy muscles.

Viral vectors are being explored as cargo ships for administering gene therapy for several kinds of diseases. For Duchenne muscular dystrophy, researchers are designing and testing vectors that send therapy directly into muscle cells. Some of these vectors target the mutations. Others ferry in a synthetic dystrophin gene.

The treatment-carrying vehicles are re-tooled from small, adeno-associated viruses. These repurposed viruses can still enter human cells. Adeno-associated viruses do not cause infections, but can evoke an immune response that is usually mild.

Earlier versions of the UW Medicine-developed treatment cassettes did enhance muscle function in previous lab studies, but not completely. That's partly because scientists have to condense the huge dystrophin gene to make it fit inside the transport virus.

Jeffrey S. Chamberlain, professor of neurology, medicine and biochemistry at the University of Washington School of Medicine, has been continuously involved in this research, from the invention of his lab's original gene therapy cassettes to their recent revamping. His group was the first to show that adeno-associated viral vectors could deliver genes to muscles, body-wide.

Chamberlain is affiliated with the UW Medicine's Institute for Stem Cell and Regenerative Medicine. He also holds the McCaw Endowed Chair in Muscular Dystrophy and directs the Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center in Seattle. The Center brings together scientists and clinicians from several institutions to investigate underlying mechanisms of various muscular dystrophies and to search for treatments, in the hopes of halting the progression of disease.

Duchenne muscular dystrophy can take away the ability to walk. Eventually the condition also affects heart and breathing muscles. Until recently, youngsters with the disease did not live beyond early adulthood and succumbed to heart or respiratory failure.

The newer gene therapy approaches for Duchenne muscular dystrophy were tested in animals with a similar genetic mutation. The cassettes were administered by intramuscular injection and systemic delivery.

According to the paper by Chamberlain and Stephen Hauschka, a muscle biologist and UW School of Medicine professor of biochemistry, and other researchers on the project, the newer cassettes served their purpose better than previous versions. The treatment increased muscle strength in the mice while protecting against contraction-induced injuries in some types of muscles. Its effectiveness was long-lasting.

"These results are encouraging for Duchenne muscular dystrophy patients," Chamberlain said. "Our studies identified two designs that function better than our previous best construct."

To create better micro-dystrophins, the researchers introduced several structural changes to the down-sized genetic materials contained in the vectors. The new models carry unique combinations of four to six of the 24 spectrin-like repeats found in the full length dystrophin protein, and include some differences in the hinge domains. Hinge domains can impact the function of the micro-dystrophin by affecting its flexibility. Hinge domain problems can render the micro-dystrophin dysfunctional. Spectrin repeats are an assembly platform for cytoskeletal proteins and also have other roles.

One of the next-generation transgenes recruits the dystrophin-associated protein, neuronal nitric oxide synthase. That transgene is a component of the investigational gene transfer candidate SGT-001, which is being evaluated for safety and efficacy in Duchenne muscular dystrophy patients in an ongoing clinical trial. Solid Biosciences, a Boston-area biotechnology company, is conducting the clinical trial, which is called IGNITE DMD.

Further laboratory studies could lead to additional functional refinements in the cassettes. For example, more work is needed to determine if one genetic construct, small enough to be packaged within one vector, will suffice for all muscle groups. Also, better genetic expression might be achievable in anatomical muscles such as the heart and diaphragm.
-end-
In addition to Chamberlain and Hauschka, other UW Medicine researchers on the project were Julian N. Ramos, Katrin Hollinger, Niclas E. Bengtsson, and James M. Allen.

Three of the researchers hold patents on the micro-dystrophins. Chamberlain holds equity in, and serves on the scientific advisory board of, Solid Biosciences.

University of Washington Health Sciences/UW Medicine

Related Muscular Dystrophy Articles:

Using CRISPR to find muscular dystrophy treatments
A study from Boston Children's Hospital used CRISPR-Cas9 to better understand facioscapulohumeral muscular dystrophy (FSHD) and explore potential treatments by systematically deleting every gene in the genome.
Duchenne muscular dystrophy diagnosis improved by simple accelerometers
Testing for Duchenne muscular dystrophy can require specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait could lead to earlier detection.
New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.
Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.
Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.
Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.
Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).
Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.
Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.
GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.
More Muscular Dystrophy News and Muscular Dystrophy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.